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BILIARY excretion of xenobiotics is a complex process

involving uptake into liver cells, intracellular sequestra-

tion and/or biotransformation, and transport into bile.

A description of liver morphology and the possible mech-

anisms of bile formation is included to aid in the under-

standing of how chemical and physiological factors affect

bile flow, hepatic uptake, and biliary excretion. Entero-
hepatic circulation interferes with the biliary elimination

of xenobiotics from the body. The considerable volume

of information that has accumulated in recent years on

the mechanisms of bile formation, hepatic uptake, and

biliary excretion is discussed in this comprehensive re-

view.

I. Historical Aspects

Liver and bile have been considered to be important
in determining temperament and health since the days
of the ancient Babylonian and Greek civilizations. In
Hippocratic medicine, bile was one of four cardinal hu-

mors (blood, phlegm, yellow bile from liver, black bile
from stomach) which were thought to control the health
status of the body. The Greek physician, Galen, main-
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BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 3

FIG. 1. Blood supply to liver by hepatic artery and portal vein.

tamed a humoral view of disease; for example, fevers of

long duration were attributed to abnormalities in yellow

and black bile. In fact, the word melancholy is derived
from the Greek words, melas (black) and chole (bile)
since mental depression was thought to arise from an

excess of “black bile.”

Scientific studies initiated by the seventeenth century
anatomist and physiologist, Regnier de Graff, described

the collection of bile and pancreatic juice from experi-

mental fistulae. Then Schwann, in 1844, established the

use of permanent biliary fistulae in dogs and Blondt, in

1846, was the first to use a cannula (378). Much work in
the nineteenth century evaluated the physiological chem-

istry of bile and its composition. Crude preparations of
bile salts were obtained by Thenard in 1807 and Berzelius
in 1808, although the structures of the bile acids were

not elucidated until the early 1930s (1259). Berzelius, in

1842, showed that bile pigment could exist in two forms,
green-colored biliverdin and yellow bilirubin. By the
1890s, bile was considered to be a physiological secretion

necessary for digestive processing of consumed fats as
well as an excretory product containing cholesterol and

bile pigments (378, 1027).

Today the dominant physiological role of bile is its
involvement in digestion and the intestinal absorption

of fats. However, studies on the excretion of numerous
endogenous and exogenous compounds have demon-

strated the importance of biliary excretion in the elimi-
nation of chemicals from the body. In his manuscript,

Trait#{233}de Toxicologie G#{233}n#{233}ral(1813-1815), M. J. B.

Orphila, the father of toxicology, noted that many me-

tallic poisons are extracted by the liver and are either

excreted into bile or remain in the liver. Later, Claude

Bernard observed that copper sulfate, potassium iodide,

and turpentine spirits are found in bile soon after intra-

venous administration. Then in 1866, Chrzonszczewsky

developed a method to visualize the biliary tree based on

biliary excretion of two dyes, aniline red and indigo

carmine (189). These early studies were generally quali-
tative and the quantitative significance of hepatic ex-

traction and excretion into bile remained obscure.
The demonstration in 1909 by Abel and Rowntree (1)

that several phthalein dyes undergo extensive biliary

excretion led to the development of diagnostic tests for

hepatic and biliary function. The radio-opaque dye,
tetraiodophenolphthalein, is excreted into bile and was

used to visualize the gallbladder by X-irradiation (413).
Meanwhile, Rosenthal and White (1002) introduced sul-

fobromophthalein (BSP) as a diagnostic test of liver

function by measuring the rate of disappearance of the
dye from plasma. BSP retention in plasma is an indicator

of various forms of hepatic disease (724). Additional
studies have been performed to determine mechanisms

of hepatic disposition and biliary excretion of BSP and

similar prototype chemicals.
The biliary elimination of xenobiotics was studied

little during the first half of the twentieth century as

work was directed toward understanding urinary excre-

tion (1265). From 1950, with the wide-scale introduction

of myriad synthetic chemicals (drugs, food additives,
pesticides), the importance of bile as a channel of xeno-

biotic excretion was realized. Compounds of complex
structure and higher molecular weight have a greater

affinity for elimination into bile than chemicals of lower
molecular weight. Thus, during the 1950s and 1960s,
hepatic extraction of many diverse groups of xenobiotics

was studied, including antibiotics, cardiac glycosides, azo
dyes, steroids, and phenothiazines; the first review on
biliary excretion was prepared by Smith in 1966 (1106).

II. Morphological Perspectives of Biliary
Excretion

The liver receives blood from two different sources.

Highly oxygenated blood carried by the hepatic artery
and terminal hepatic arterioles and blood loaded with
nutrients carried through the portal vein and terminal

venules supply all structures in the portal tracts and the
parenchyma (fig. 1). These two vascular affluents diverge

throughout the liver and are accompanied by branches

of nerves, biliary and lymphatic vessels, and fibrous
tissue forming a complex known as the portal tract

(hepatic triad). A second vascular tree originates with
terminal hepatic venules (central vein) that converge to

become the hepatic veins. Thus, blood flows from the
spigot formed by confluence of the portal and arterial
vasculature into the hepatic sinusoidal sink and then
drains into the central vein. The space between the two
vascular trees is filled with hepatocytes that line the

sinusoids, which are arranged tridimensionally and bur-
row between hepatocytes, branching and anastomosing
as they converge upon the terminal hepatic venule. Thus,

the liver resembles an organized sponge with holes as the
sinusoids and with walls of hepatocytes (117).

Several seemingly conflicting concepts of liver struc-

ture are actually complementary. The classic lobule in
histological sections is hexagonal with portal spaces at

each corner. The lobule can be viewed as a wheel with
the central vein as the axle, the sinusoids as spokes, and
the portal tracts lying on the circumference. Branches of
hepatic artery, portal vein, lymph vessel, and bile ductule
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FIG. 2. Blood plasma enters space of Disse by intercellular gaps
between endothelial cells, fenestrations, and lack of complete basal

lamina.

4 KLAASSEN AND WATKINS

are enclosed in a common vestment of connective tissue
and course through the portal space. Blood enters the

hepatic sinusoid from hepatic artery and portal vein, and

flows centripetally through the lobule to exit via the

central vein. This concept is somewhat misleading since
central veins and portal tracts cross at all angles, but the
lobule is seen only when adjoining central and portal

veins are parallel and the tissue is sectioned at right

angles to the axis of these vessels. However, the simple

liver acinus was conceived as a microscopic parenchymal

mass of irregular shape and size that is arranged around
an axis formed by the portal triad (956, 957). The acini

are not limited by any recognizable anatomical land-
marks but extend outward to the terminal branches of

one or more central veins. Interdigitation of terminal
branches from three triangular portal spaces around one
central venule creates a vascular pattern which, micro-

scopically, resembles a hexagon. The parenchyma is con-
tinuous between adjacent acini and between classic lob-

ules.
The sinusoids that separate the portal triad and central

vein are larger than capillaries and more irregular in

shape. They are lined primarily by a discontinuous ma-
trix of endothelial cells lacking complete basal lamina

and the branching pseudopodial Kupffer cell. These

phagocytic cells normally lie on the luminal side but
occasionally appear interposed between endothelial cells

and form a minor portion of the sinusoidal wall. Inter-

cellular gaps between endothelial cells, fenestrations, and
lack of complete basal lamina permit blood plasma con-

taming endogenous and exogenous substances to enter

the space of Disse (fig. 2), i.e. between sinusoidal mem-
brane and hepatocytes, and to have direct contact with
the microvilli of the parenchymal cell membrane. Red

blood cells cannot pass into the space of Disse.
The normal young adult rat has two main cell types,

hepatic parenchymal cells and endothelial cells. Paren-

chymal cells constitute 90% to 95% of total liver weight

but only 60% to 65% of total cell population, while
reticuloendothelial cells (Kupffer, littoral, or sinusoidal

cells) represent 5% to 10% of liver by weight and 35% to
40% of total cellular population (727). Phagocytic Kupf-

fer cells remove and digest organisms and particulate

matter that pass through the intestinal wall and enter
blood. The hepatocytes (parenchymal or polygonal cells)

are responsible for the elaboration of bile (460). The

portion of the hepatocyte that abuts the sinusoids pos-
sesses microvilli that are bathed with extracellular fluid

or plasma in the space of Disse. This structural arrange-
ment facilitates contact between plasma protein-bound
ligands and carriers on the surface of the hepatocyte

membrane.

Whether using the classic lobule or the liver acinus

concept, hepatocytes can be separated based upon dis-

tance from the vessels supplying blood (fig. 3). Cells in
zone 1, or periportal region, are near the portal tracts

-�- Central Vein

,,,‘ i�)j�.! �

2 �
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Hepatic Artery
B� Duct�e

Central Vein

FIG. 3. Separation of hepatocytes based upon distance from vessels

supplying blood.
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BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 5

and are bathed by blood closer in composition to arterial
than to portal venous blood. Cells in zone 3, or centrilob-

ular region, are in a zone in which no arteriole enters
and are situated at the microcirculatory periphery around

the central vein. Zone 2, or midzonal region, is a dividing
layer of tissue between zones 1 and 3. Heterogeneity
between centrilobular and periportal cells has been
shown by histochemical studies (572, 859, 1223). Hepa-

tocytes may be fractionated by centrifugation on Ficoll

density gradients (166) into two classes: 1) light hepato-

cytes (mean density 1.10) are predominantly centrilob-
ular and contain abundant smooth endoplasmic reticu-

lum, numerous small mitochondria, and few glycogen
granules; and 2) heavy hepatocytes (mean density 1.14)

are primarily periportal and are characterized by large,
compact glycogen granules and prominent rough endo-

plasmic reticulum (266, 441, 442, 1231). Centrilobular
cells contain larger amounts of lysosomes and smooth

endoplasmic reticulum than periportal hepatocytes (565,
754). In addition, bile canaliculi are larger in zone 1 than

in zone 3 while those in zone 3 dilate more in response

to bile acid-induced choleresis than canaliculi in zone 1

(719). Within the acinus, differences exist in oxygen

tension, in rates of enzymes mediating protein synthesis,

oxidation, hydrolysis and conjugation, and in concentra-
tion of glutathione (444, 1156). However, this functional

heterogeneity does not result from differential expression
of genetic properties inherent in hepatocytes but rather
reflects quantitative differences in functional require-

ments.

There is a lobular gradient in the sinusoids as cells on
the periphery of the lobule (zone 1 or periportal) are

perfused first with blood containing higher concentra-

tions of solutes while cells near the terminal hepatic

veins (central vein, zone 3) are perfused last and exposed

to blood with less solute. However, flow is not unidirec-

tional because of the nonuniformity of resistances within
the hepatocyte syncytium and the intermittent anasto-

moses of hepatic arterioles into zones 2 and 3. Com-
pounds that diffuse through membranes will be concen-

trated in periportal cells, while solutes requiring a carrier
will behave differently depending on the availability of

transport systems. This lobular gradient of nonuniform

exposure of liver cells to solutes has been illustrated for
galactose (402), fluorescent dyes (445), and a bile acid
derivative (563).

In addition to the labyrinthine sinusoids, the biliary
system branches throughout the liver. Bile canaliculi are

extracellular spaces as minute as 1 to 2 sm which are
limited by, and located between, two or more abutting

hepatocytes. The integrity of the biliary space is main-

tamed by tight junctions that are stabilized by desmo-

somes and microfilaments (104,375,500,862). Generally,

a single canaliculus courses between adjacent cells and

forms a tridimensional network of channels that conveys

bile into larger ductules and eventually into bile ducts

(ducts of Hering, or cholangioles) lined with cuboidal

epithelium. The functional properties of bile ductules
and ducts in bile secretion have not been determined
(566). The apparent volume of the biliary tree in dogs is
2.5 xl/g of liver (75) and in rats, 2.3 (65, 452). The main
duct from each lobe intersects forming the hepatic duct
which anastomoses with the pancreatic duct to form the
common bile duct which empties into the duodenum.

Some species (rat, whale, and deer) do not have a gall-

bladder that branches off the hepatic duct.

III. Bile Composition

Composition of bile varies among species and upon the
physiological and nutritional status of the animal at the

time of bile collection. Table 1 indicates concentrations
of biliary constituents in several species. Bile and plasma
have similar electrolyte compositions; sodium is the dom-
inant cation, while bile acids, chloride, and bicarbonate
all contribute to total anion content. In addition, bile

contains significant amounts of bile pigments, choles-
terol, phospholipids, and protein. Relative concentra-
tions of organic solutes and inorganic electrolytes may

fluctuate but the osmolarity ofbile is generally equivalent
to that of plasma even when plasma osmolarity is arti-
ficially increased or decreased (1245). Average water
content of bile is approximately 97%. Almost half of the
3% solid material is bile acids. In gallbladder bile, water

content is lower (87%) which results from concentration
of hepatic bile by the gallbladder.

Marked species differences occur in the relative

amounts of the bile acid derivatives found in bile, the
identity of the primary bile acid, and the nature of the

conjugating group. These variations correlate roughly
with diet; herbivores, except bovids, have primarily di-

hydroxy or monohydroxymonoketo bile acids conjugated
with glycine, whereas carnivores have taurine conjugates
of trihydroxy bile acids. Omnivores and bovids have

significant amounts of all types (470). The rabbit and
domestic pig excrete bile acids conjugated with glycine
while humans eliminate both glycine and taurine conju-
gates of dihydroxy and trihydroxy bile acids. This dietary

classification has exceptions such as the high proportion
of taurocholate in rat bile (207, 469, 1244). Marked

species variations occur also in phospholipid and choles-

terol concentrations.

Iv. Bile Formation

Production of bile by hepatocytes is a major, but poorly
understood function of the liver. Bile formed at the

canaliculi is modified in the ductules and ducts by proc-
esses of reabsorption or secretion of electrolytes and

water. The study of hepatic bile formation is difficult

because the primary secretion elaborated by hepatocytes
is discharged into minute channels and cannot be sam-
pled directly with current micropuncture techniques.
Transmembrane ion fluxes and electrical potentials can-
not be measured. Despite these anatomical limitations,
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TABLE 1
Comparison of bile in different species.

Component Rat* Rabbit* DOg* Catt Guinea Pigt Humans

Na� (mEq/l)
K� (mEq/l)

Cl� (mEq/l)

HCO3 (mEqJl)

Bile acid (mM)

Phospholipids (/Lg/ml)
Cholesterol (�g/ml)
Protein (mg/ml)
Bile flow (�tl/min/kg)�
Osmolarity (mOsmol/l)

* Klaassen (632).

t Pugh and Stone (951).

� Thureborn (1178).
§ Corneliu8 (216).

II Russell et al. (1015).

much research has been conducted in recent years. Com-
prehensive reviews pertaining to mechanisms of bile

formation are available and may be consulted for details

of earlier work (124, 305-307, 309, 354, 556, 566, 570,

887, 970).

A. Osmotic Ultrafiltration

The central problem to understanding canalicular bile
formation is comprehension of the mechanisms gener-

ating bulk movement of water into bile canaliculi. Pos-
sibilities include filtration, vesicular transport, and ac-
tive transport of certain solutes leading to passive water

flow.
In contrast to the kidney, the architecture of the liver

does not provide an efficient arrangement for hydrostatic
filtration. Bile is secreted against a pressure gradient
that exceeds perfusion pressure in the isolated perfused

rat liver (135). In addition, bile flow is independent of
perfusion pressure and blood flow once a critical opening
pressure is obtained and the oxygen supply to the tissue
is not limited (136, 137). These results rule out hydro-
static pressure as an important determinant for bile

production.

Another mechanism that may be operative in bile
formation is the extrusion of materials by exocytosis.
Horseradish peroxidase (978), lysosomal proteins (710,

711), immunoglobulin A (725), and insulin (228) are
thought to be secreted into bile by a pathway involving
the Golgi, associated lysosomes, and smooth endoplasmic
reticulum (566). Although vesicular transport is demon-
strated by the above examples, infrequent visualization

of exocytic vacuoles suggests this excretory step does not
contribute significantly to the formation of hepatocellu-
lar bile (354).

Present concepts of bile formation evolved from the
initial hypothesis of Sperber (1114) that any osmotically
active compound transported into bile can create an

osmotic gradient from the hepatocyte into the canalicular

lumen leading to passive movement of fluid from cells
and/or intercellular spaces into the lumen. Bile will

continue to flow if solute is transported into the canalic-
uli, providing that resistance to flow in the biliary tree

does not exceed the osmotic pressure created by trans-

ported solute(s).
Canalicular bile formation is estimated indirectly by

measuring the biliary clearance of inert solutes, whose
elimination is not significantly modified by processes in
bile ductules and ducts, that enter the bile at the cana-
liculi by simple, nonrestricted diffusion. The solutes,
erythritol and mannitol, have been thought to meet these

requirements. Hepatocytes are remarkably permeable to
erythritol and mannitol (353, 392, 897), and their excre-

tion depends on the permeability of the epithelium and
the rate of bile flow at a specified locus (350, 351, 353,

356, 1245). Clearances of erythritol and mannitol corre-
late with changes in bile flow during bile acid-induced
canalicular choleresis. However, recent studies in dogs

and rhesus monkeys suggest that secretin, which induces
ductular bile production, also stimulates erythritol and
mannitol clearance (61, 74, 737). The transfer of eryth-

ritol, sucrose, and inulin from plasma to bile across
isolated perfused duct segments from rats is proportional
to molecular size (1105). Accurate determination of the

magnitude of canalicular bile formation may also be
affected if back diffusion of solutes occurs. Although the
validity of erythritol as a measurement of canalicular
bile production has been questioned (256, 737, 1105), its

clearance provides the only quantitative estimate of can-

alicular bile production presently available.

B. Bile Acid-dependent Flow

In 1890, Schiff demonstrated that feeding bile to dogs
with biliary fistulas produced a choleresis. In fact, a direct
relationship between bile acid excretion and biliary flow
has been observed in all species examined, including
humans, over a wide range of bile acid excretion rates

(125, 127, 630, 938, 1148). Bile acids are among the most
effective choleretic agents (1246) and bile formed by their

active secretion is known as bile acid-dependent flow.
Studies in the dog (940, 1253), guinea pig (1080), and
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FIG. 4. Linear extrapolation of bile flow versus bile acid excretion.

BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 7

pony (37) indicate that bile flow rate is directly propor-

tional to the rate of sodium taurocholate excretion after
intravenous infusion over a wide concentration range.

Normally, bile acids are present in bile as mixed mi-
celles (161), and their osmotic activity in bile is generally
less than that of nonassociated molecules. Dehydrocholic
acid does not form micelles and produces choleresis at a

lower concentration than does micelle-forming cholic
acid (1116). Although a single micelle has a similar

osmotic activity as 1 molecule of free bile acid, its effec-

tive osmotic pressure is greatly reduced by formation of
large polyanionic aggregates with a molecular weight of

about 27,000 (556). Each micelle contains around 500
bile acid molecules.

However, canalicular bile is not produced completely

by the osmotic properties of bile acids. Interruption of
the enterohepatic circulation markedly decreases bile

acid excretion but has little effect on bile flow (623).
Conflicting data for dehydrocholate-induced choleresis
indicate that the increase in bile flow precedes the excre-
tion of dehydrocholate by more than can be accounted

for by the biliary tree dead space (1109). Bile flow asso-

ciated with secretion of micelle-forming cholate may
actually exceed that associated with non-micelle-forming

taurodehydrocholate (875). Attempts to correlate chol-
eretic properties with micelle-forming capacities of bile
acids in vitro have failed (37, 630, 876, 1067). The bile

acid-dependent fraction has also been proposed to result

from osmotic activity of inorganic cations that accom-
pany anionic bile acids to maintain electrical neutrality.

The osmotic activity of a solute depends on the relative

permeability of the membrane to solute as compared to
solvent, or its reflection coefficient (566). Reflection
coefficients of the biliary tree for different solutes are

unknown due to the technological inability to sample
bile at the canaliculus. Bile acid-dependent flow may also
originate from some modulatory effect of bile acids on
transport systems for other osmotically active solutes

such as sodium ion (632, 928, 1230).

C. Bile Acid-independent Flow

Although hepatocellular bile formation was originally

believed to be due to the osmotic activity of bile acids,

linear extrapolation of the regression line for bile flow
versus bile acid excretion to the ordinate indicates can-

alicular secretion in the absence of bile acid excretion
(fig. 4) (1254). This bile is termed the bile acid-inde-

pendent fraction and has been observed repeatedly in
many species including dogs, rats, rabbits, and humans

(102, 125, 251, 311, 938, 958, 1148, 1254). In contrast,

chickens produce only small amounts of bile that are
independent of bile acid secretion (157). However, rep-

resentation of the bile flow versus bile acid excretion
relationship by a single regression line may not be valid
since infusion of bile acids into bile acid-depleted rats or
rhesus monkeys results in a family of regression lines
which progressively diminish in slope as the biliary bile

acid concentration increases (52, 58). At low bile acid
concentrations (< 10 mM), the slope of the regression
line is approximately 10 times that found at higher levels
(35 to 45 mM). Thus, the osmotic activity of bile acids
is relatively greater at lower concentrations, and calcu-

lation of the bile acid-independent fraction of bile flow
by linear extrapolation of bile flow versus bile acid secre-

tion at concentrations above 10 mM might overestimate
this fraction.

The bile acid-independent fraction of canalicular bile
secretion varies among species (309) and comprises 40%
of spontaneous basal bile secretion in humans (742) and
about 60% in lagomorphs and rodents (311, 623, 1080).

In addition, pretreatment with phenobarbital for 4 days
increases bile formation by 50% in the rat but does not
stimulate bile acid excretion (102, 622, 623). Other stud-
ies in the isolated perfused rat liver demonstrate definite

secretory pressures even with negligible bile acid secre-
tion (127).

1. Sodium Ion Secretion. The mechanism for formation
of the bile acid-independent fraction is not known but

may be due to sodium, chloride, or bicarbonate ion ex-
cretion. Sodium ion secretion has been implicated by two

separate lines of evidence. First, cyclic 3’ ,5’ -adenosine

monophosphate (cAMP) increases sodium ion transport
out of the hepatocytes and stimulates bile flow in the
dog by increasing bile acid-independent flow (885). Glu-
cagon and theophylline, which increase intracellular

cAMP levels, also stimulate this fraction of bile flow in
dogs (70, 567). In addition, theophylline increases bile

acid-independent flow in rats but does not increase net

bile flow because the bile acid-dependent fraction is
decreased (674). In the rat, glucagon and dibutyryl-

cAMP do not stimulate bile flow (51). In fact, Poupon et
al. (933) examined the effects of dibutyryl-cAMP, ami-
nophylline, and glucagon on bile acid-independent flow
in the dog and rat and found no relationship between 1)

the accumulation of cAMP or 2) the magnitude of the
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8 KLAASSEN AND WATKINS

rise in cAMP, and the increase in bile flow. They con-

cluded cAMP does not have a physiological role in bile
formation. Whether other cyclic nucleotides, such as

cyclic guanosine monophosphate, are cellular mediators
of secretion is unknown, but reductions in extracellular

calcium ion markedly inhibit bile production in isolated
rat liver (889). Thus, an interrelationship between cyclic

nucleotides, calcium fluxes and bile secretion cannot be

excluded.
Second, modulation of sodium ion excretion by con-

trolling Na�-K�-adenosine triphosphatase (ATPase) ac-

tivity is thought to influence the formation of this frac-

tion of bile flow. Na�-K�-ATPase was implicated when
inhibitors such as amiloride, ethacrynic acid, and oua-

bain diminished the bile acid-independent fraction in
rabbits (310, 311). In contrast, later studies indicated

ethacrynic acid produces choleresis in rabbits and rats
(178, 658, 1078), and ouabain increases bile flow in rats

(410, 1017). Graf and Peterlik (412) suggested that the

choleretic effect of ouabain in the isolated perfused rat
liver results from inhibition of sinusoidal Na�-K�-

ATPase. The consequential rise in intracellular Na�
concentration would stimulate the canalicular ATPase

to extrude more sodium ion thereby increasing canalic-
ular bile flow. However, unaltered ouabain (1017) and
the glutathione conjugate of ethacrynic acid (178, 658)

are readily concentrated in bile, and choleresis is attrib-
utable to an osmotic effect of the drugs themselves.

Recent evidence suggests both mechanisms may be im-

portant in that canalicular excretion of the glutathione

conjugate is rate-limiting but is accompanied by en-

hanced extrusion of Na� into the canalicular lumen
(908). Others indicate that vasoconstrictive actions of

cardiac glycosides might account for the reduction in bile
acid-independent flow (812, 1162, 1177).

The affect of numerous compounds on bile formation

[rose bengal (704), ethinylestradiol (968), phenobarbital

(968, 1091), taurocholate (1230), thyroid hormones (717),

ethanol (762), and cycloheximide (747)] has been attrib-

uted to influences on Na�-K�-ATPase supposedly pres-

ent at the canaliculi. However, recent evidence demon-
strates that Na�-K�-ATPase is located on the sinusoidal

and lateral surfaces of the hepatocytes (113, 715, 934).

Alterations in bile acid-independent flow and Na�-K�-
ATPase activity do not always change in parallel (595,

796). Thus, generation of this fraction of bile flow may

not depend on Na�-K-ATPase activity; instead the
major ATP-hydrolyzing enzyme at the biliary pole of the

hepatocyte has been suggested to be Mg��-ATPase (317,

478, 509).

Alterations in liver plasma membrane fluidity directly

affects Na�-K�-ATPase activity. Fluidity has been in-

creased in rats pretreated with propylene glycol, thyroid

hormone, and cortisone, decreased by ethinylestradiol,
and unaffected by phenobarbital (595). The role of mem-

brane fluidity in bile formation needs further study.

Recently, a method for isolating canalicular-enriched
plasma membranes has been reported (1033). The mem-
branes exist as vesicles and are highly enriched in alka-

line phosphatase, Mg�tATPase and 5’ -nucleotidase.
Physiological concentrations of micelle-forming bile

acids reversibly inhibit both Mg��- and Na�-K�-
ATPases and reversibly increase the fluidity of liver
plasma membranes in vitro (1034). Although there are

many data on the enzymatic and transport properties of

the ATPase (994), more information is needed before

their role in bile formation is understood (308).
Recent studies in isolated perfused rat liver where

sodium ion is completely replaced by lithium ion indicate

that much of the basal bile acid-independent bile for-

mation is probably attributable to an ion pump other

than Na�-K�-ATPase (1202). Although Na�-K�-ATPase
activity is depressed, bile acid-independent flow is not

influenced by complete replacement of sodium ion, thus

suggesting that other mechanisms mediate elaboration

of this fraction of bile.
2. Chloride and Bicarbonate Ion Secretion. Transport

of anions other than bile acids may influence formation
of the bile acid-independent fraction. Replacement of

chloride ion in the perfusate of the isolated rat liver with
nitrate ion decreases bile flow by 20% (411). After read-

mission of chloride ion, bileflow returns to normal thus

indicating that transport of chloride ion may be a minor

determinant of secretion. Since bile is alkaline with

respect to plasma by virtue of its bicarbonate ion content,

transport of this ion may be more important. Hardison
and Wood (465) observed a reduction in bile flow and

sodium ion excretion when bicarbonate ion was removed
from the perfusate while bile acid elimination was unaf-

fected. Bile flow rates were restored to control values
upon addition ofbicarbonate or dimeth,yloxazolidine-2,4-
dione, a weak, membrane-permeable ‘a#{228}idcapable of

transporting protons (465). Thus, bicarbonate transport
in the liver may involve a sodium-hydrogen exchange

system where CO2 diffuses across the membrane, hy-

drates, and ionizes to W + HCO3. A proton is supplied

for Na�-W exchange diffusion and bicarbonate ion is

apparently transported into bile. Similar carrier systems
have been well characterized in the renal tubule (388,

846), pancreas (1046, 1155), and small intestine (1192).
Choleresis induced by SC-2644 in the dog is due to

stimulation of canalicular bicarbonate secretion (72,

387). The peptide hormone secretin produces choleresis

in the dog whichis associated with an increase alkalinity

ofbile and total excretion of HC03 (568, 940). Erythritol

clearance measurements suggest the secretin-induced

choleresis is of ductular rather than canalicular origin.

However, secretin has no effect on bile flow or composi-

tion in the rat (309), yet Hardison and Wood (465)

demonstrated a role of bicarbonate ion in bile formation
in that species. Whether bicarbonate transport contrib-

utes to bile flow of canalicular or ductular origin remains

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 9

uncertain. Recent studies in cultured hepatocytes mdi-

cate that sodium-coupled chloride transport may be im-

portant in the production of bile acid-independent flow

(1037). However, no definitive evidence was presented to

suggest that chloride transport accounts for a major

portion of basal bile flow.

3. Paracellukir Fluid Flow. Bile may also be formed via
the paracellular pathway where water and inorganic sol-

utes gain entrance into bile through the intercellular
spaces and associated junctional complexes (126, 297,

720). Considerable electrophysiological evidence dem-

onstrates certain epithelia with low electrical resistance

(i.e., the jejunal epithelium) are “leaky” and their tight

junctions permit passage of fluid (370). Hepatocyte junc-

tions have been classified as intermediate between tight

and leaky based on the number of associated microfila-

ments (365, 782). However, these structures appear to be

heterogeneous which may be important in the regulation

of functional permeability (702). Layden et al. (720)

demonstrated that dehydrocholate infusion increased 1)

bile flow, 2) biliary clearance of [‘4C]sucrose, an index of
membrane permeability, and 3) incidence of invagina-

tions of the intercellular surface membranes adjacent to

the junctional complexes of hepatocytes. Similar mor-

phological changes were observed after chronic taurocho-

late infusion (844). Metz and Bressler (803) noted that

the morphological changes in tight junctions induced by

bile duct ligation were reversible following reestablish-

ment ofthe enterohepatic circulation. These data suggest

that hepatocyte tight junctions are not static structures

but may respond to alterations in bile flow. Additional

evidence indicates that phalloidin treatment increases

the permeability of the junctional complex which con-

trols the barriers to paracellular fluid flow (297).

Paracellular ion equilibration could occur at two sites:

between hepatocytes and/or in bile duct epithelia. Since

the surface/volume ratio of the biliary tree decreases

abruptly at the canaliculi-portal ductule junction, os-
motic equilibration in ductules or ducts is unlikely (354).

Bile osmolarity is similar to that of red blood cell-free

perfusates (150 to 450 mOsmol/l) in isolated perfused

rat liver thereby indicating that bile must attain osmotic

equilibrium at the hepatocyte (124) because bile ducts

are functionally inactive and do not permit exchange of

24Na or 36�fl (411). The permeability barrier to ion entry

depends on ion species. The sequence for cations is

lithium > sodium > potassium > Tris > choline, and for

anions is nitrate > chloride > acetate > sulfate. Graf and

Peterlik (411) concluded these ions enter bile by crossing

the junctional complex from blood to bile.

Selective permeability of the biliary canalicular mem-

brane has been evaluated by measuring the clearance of

charged and uncharged weight-matched solute pairs

([carboxyl-’4C]inulin and [methoxy-3H]inulin, and [‘4C]

ferrocyanide and [�H]sucrose) (130). Since the molecular

dimensions and diffusion abilities are similar, the lower

biliary clearance for the negatively charged species sug-

gests there is an electrical barrier to anion movement.

Solute pair clearance ratios were constant over changing

bile acid excretion rates thus implying that bile acids did
not generate a significant negative potential in the can-
alicular lumen. Clearance of methoxyinulin and the

much smaller molecule sucrose were similar, suggesting
identical channels for both solutes which are much larger

than the pores that admit water and smaller solutes such

as erythritol. Bradley and Herz (130) estimated these

channels represent 10% of the surface area available for

water movement.

4. Microfilaments and Microtubules. Microfilaments
associated with actin are found in hepatocytes (363) at
the cytoplasmic face of the plasma membrane, particu-

larly around canaliculi where a thin network extends into

the microvilli (375, 862). Microfilaments derive from the

globular protein actin and are responsible for the con-

tractile functions of many cells. Phalloidin causes irre-
versible polymerization of actin into microfilaments thus

producing hyperplasia of actin filaments in hepatocytes
and a decreased bile flow (268, 297, 374, 408, 1189).

Cytochalasin B specifically inhibits the contractile func-

tion of microfilaments and produces a thickening of

microfilaments within the pericanalicular ectoplasm, a

loss of microvilli from bile canaliculi, and a decreased

bile flow in the perfused rat liver (919).

Microtubules consist almost exclusively of polymeric
tubulin. Colchicine, an inhibitor of tubulin polymeriza-

tion, causes an almost complete disappearance of micro-
tubules and decreases bile acid secretion (269). Colchi-

cine also inhibits secretion of lipoproteins and proteins

into the serum (269, 1130). Combined administration of

phalloidin and colchicine synergistically increases the
pericanalicular microfilamentous network and the dis-

appearance of microtubules and decreases basal bile flow
(269). Agents that decrease microtubular function, such

as vinblastine, vincristine, and coichicine, also cause

hepatic accumulation of small secretory vesicles contain-
ing proteins and triacylglycerol which are normally ex-

creted into bile (232, 942, 960). Two benzimidazole car-

bamates, nocadozle and parbendazole, with antimicro-

tubular activity block the biliary secretion of albumin

and triacylglycerol by isolated hepatocytes (108); this
indicates involvement of microtubules in biliary protein

excretion.
Microtubules and microfilaments also play a role in

bile acid uptake by isolated hepatocytes (965) and in
biliary lipid secretion (419). In fact, rat hepatocytes in
primary culture show dynamic contractionsofbile can-

aliculi by actin-containing microfilaments which may

influence bile production (920).

D. Ductular Modification of Canalicular Bile

The ductular-ductal system can alter electrolyte com-
position and volume of canalicular bile by reabsorption

and/or secretion of water. Secretion of water depends on
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10 KLAASSEN AND WATKINS

active bicarbonate excretion (177, 350, 1148) and possibly
an electroneutral sodium chloride pumping mechanism

(105). The quantitative contribution of ductular secre-

tion to total bile flow is highly species-dependent. Inter-
mittent feeders, such as dogs and humans, have an

important ductular component, while continuous eaters,
such as most rodents, have a negligible contribution of

the collecting system to bile flow (354). The concentra-
tion ratios of erythritol in bile to plasma are as follows:
dog, 2.3; rabbit, 1.2; rat, 0.9; and guinea pigs, 0.7 (311,

350, 356, 623, 632, 1254). These data indicate consider-
able ductular reabsorption in dogs, some in rabbits, no

reabsorption in rat, and some ductular secretion in
guinea pigs. The ratio in humans is between 0.27 and

0.43, indicating pronounced ductular secretion (125, 743,

938). Rodents have high rates of spontaneous bile flow

(50 to 90 �sl/min/kg) and large bile acid-independent

fractions.
Many gastrointestinal hormones, which exert physio-

logical control of gastric acid secretion, intestinal motil-
ity, and gallbladder contraction, can also influence bile

composition and volume during eating and digestion and
hence affect the choleretic properties of these hormones

and the enterohepatic cycle of bile acids. Studies of

controlled interruption of the enterohepatic circulation
(261) and comparison of fed versus fasted state on bile

production in primates (1150) emphasize the importance

of eating on variations in ductular secretion.

The best evidence for ductal modification of canalic-
ular bile is that the pancreatic peptide secretin stimulates

bile formation in isolated bile ducts of dogs (832) thus

producing an abrupt negativity in the lumenal membrane
potential indicative of active anion transport, possibly

HCO:3. In addition, analysis ofexcretory transients after
selective arterial injections of secretin support a ductular

site of action (1251). Bile becomes slightly hypertonic

during secretin choleresis (940) which probably results
from increased excretion ofchloride and bicarbonate ions

(463).

Reabsorption and secretion of water and electrolytes

can be performed by ductular epithelium, especially after
cholinergic blockade in dogs (1254) and resection of the
antrum and small bowel in monkeys (1148); both proce-

dures suppress hormone-mediated secretion. A constant
amount of water is reabsorbed during taurocholate-in-

duced choleresis (74), suggesting that fluid reabsorption

occurs independently of bile flow. In dogs, the concen-

trative capacity of the common bile duct increases after

cholecystectomy (1253). After surgery and an overnight

fast, extrahepatic ducts are enlarged and contain several

milliliters of bile similar in composition to gallbladder
bile. Ductal reabsorption appears to be independent of

canalicular bile production in dogs and monkeys and is
almost non-existent in rats and rabbits (354, 367, 632,
970). The reason for this species difference is unknown.
Additional evidence indicates the ducts in rats and hu-

mans may actively reabsorb glucose (447, 872, 873) and
slowly reabsorb urea (911). Retrograde intrabiliary injec-
tion experiments indicate extensive absorption of water,

morphine, and BSP. The latter two undergo subsequent
conjugation and biliary excretion (371, 534, 872, 873,
911-913). Whether secretion or reabsorption predomi-

nates under normal physiological conditions, however, is

unknown.

E. Neurohumoral Control of Bile Formation

There are numerous factors that influence bile flow
but whose sites of action are unknown (306, 307, 309,

354, 570, 970). These factors include neural influences,
vascular pressure, and hormones.

Nerve fibers are abundant within the portal tract blood
vessels, bile ductules, and ducts (359, 1152). Whether

these nerves influence bile flow directly has not been

determined. However, alterations in hepatocellular per-
fusion induced by nerve stimulation could influence bile

formation by affecting the counterflow arrangement
(1135). A direct effect ofvagal tone on bile flow has been
suggested since truncal vagotomy decreases spontaneous
bicarbonate secretion and reduces insulin-induced chol-
eresis (407, 579). Apparently, considerable species differ-
ences exist as stimulation of the vagus influences bile
flow in man (60) and dogs (367, 383, 579, 924, 1161) but

has no effect in rabbits and cats (1161). Although chol-

eresis is observed after dopamine administration (468),

adrenergic control mechanisms are even less understood
than are vagal effects. It is also difficult to discern
whether these effects result directly from neurotransmit-
ters or from indirect neural influences mediated by al-

terations in perfusion, released hormones, and/or meta-
bolic changes.

Bile flow is largely unaffected by variations in hepatic

blood flow rate once a critical opening pressure is at-
tamed (136, 137). In contrast, released hormones can
produce marked changes in bile flow (354, 570, 970). For

example, gastrin (1294) and histamine (582) stimulate
production of bile with high bicarbonate and chloride ion

concentrations, respectively. Gastrointestinal hormones
that stimulate flow are listed in decreasing order of

potency: cholecystokinin, caerulein, pentagastrin, and
gastrin II (569, 578, 580). Sulfated gastrin II, but not

gastrin I, is choleretic only at pharmacological-not
physiological-doses (578). Feeding also increases bile
flow (568).

Hydrocortisone increases flow of hepatocellular bile
with a high chloride ion concentration in dogs (759). Like

insulin, glucagon also stimulates bile flow in man (282,

730) and dogs (581), but not in guinea pigs and rabbits
(1079), by apparently increasing cAMP levels. Whether

glucagon stimulates canalicular or ductular bile flow has
not been determined. Thyroidectomy and hypophysec-
tomy decrease bile flow (623, 717). Thus, numerous hor-
mones have profound actions on the elaboration of bile
and biliary flow by mechanisms yet to be elucidated.
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Bile flow, biliary concentrations, and excretion rates

of bile acid, cholesterol, and phospholipid follow a cir-

cadian rhythm in rats with a peak at midnight and a
nadir at noon (57, 59, 267, 491, 1214). Bile acid-inde-

pendent flow is maximal during the night and early
morning (57, 59). Biliary transport maximum for dibrom-

ophthalein disulfonate (DBSP) was 25% higher at night
than at noon (1214, 1217). In addition, food intake stim-
ulates bile flow and appears to be a major factor in the
circadian rhythm of bile secretion (801).

V. Alteration of Bile Formation

Many endogenous compounds and xenobiotics in-

crease or decrease bile flow and are referred to as chol-

eretic and cholestatic agents, respectively. Bile flow rate
may be expressed relative to body weight or liver weight
(usual methods) or hepatic DNA content (811).

A. Ciwleresis

A chemical can increase bile flow by stimulating the
manufacture and secretion of biliary constituents and by

biliary excretion of the chemical and/or its metabolites.
1. Bile Acids. The acute effect of bile acids on bile

production has been extensively examined. Presumably,

choleresis results from the osmotic gradient created by
excretion of bile acids into the canalicular lumen. Recent

studies in rats indicate the following choleretic potencies
in decreasing order: dehydrocholic acid > chenodeoxy-
cholic acid � cholic acid > taurocholic acid > deoxycholic
acid > glycocholic acid (337, 877). Similar results have
been observed in dogs (624, 630). The volume of water

excreted per micromole of bile acid (estimated by calcu-
lating the slope of the relation between bile flow and bile

acid excretion; fig. 4) depends on species and bile acid.For

taurocholic acid it is 8 �tl in dogs (940, 1254), 13 sl in
rhesus monkeys (261), 15 sl in rats (102, 1080), 30 �tl in
rabbits (310), and 26 zl in guinea pigs (1080). In the rat

and rabbit, bile acids can produce a two- to threefold
increase in bile flow while in the dog they increase bile

flow six- to sevenfold (624). These differences are largely

due to the much lower basal bile flow in dogs. Dehydro-
cholate produces a higher bile flow which is thought to

be related to its lower tendency to form micelles (243,
1080, 1114) since the osmotic potency of micelle-forming

bile acids is lower than that of non-micelle-forming bile
acids (461). More recent studies suggest that the chol-

eretic potency of bile acids is not inversely related to
their ability to form micelles (337, 630, 875, 1067).

The bile flow during bile acid choleresis often exceeds
that which would be theoretically accounted for by simple
osmotic activity of the bile acid in bile. This extra bile
may be formed either by effects on an electrolyte pump
or by decreased reabsorption of fluid from the biliary
tract. Wheeler et al. (1254) showed that bile flow would
increase by only 1 to 2 �tl/min/kg if fluid reabsorption
were inhibited. Thus, the most likely explanation is that

bile acid-independent flow may also be stimulated by

bile acids (635).
Another factor important in determining differences

in bile acid-induced increases in bile flow is the perme-

ability (conductivity) of the canalicular epithelium to
water and inorganic ions. This factor is thought to be

the most important determinant of interspecies varia-
tions in bile flow (1246, 1247), but probably does not

represent a major mechanism for bile acid choleresis
(875). A recent study has shown that 7-ketolithocholate

and ursodeoxycholate stimulate bile flow of canalicular

origin which is rich in bicarbonate (277). Since bile flow
exceeded the theoretical value for an osmotic choleresis

and since bicarbonate excretion was elevated, these two

bile acids apparently stimulate bile flow by at least two

mechanisms.
2. Other Organic Compounds. Numerous xenobiotics

including organic anions, cations, and neutral com-

pounds are capable of producing a choleresis in one or
several species of animals. Basal bile flow rate varies
widely from 5 �sl/min/kg in dogs to 60 in rats and rabbits,
and 160 in guinea pigs (428, 624, 951), and the choleretic

effect of a xenobiotic partly depends on the species and

its basal flow. For example, bile flow is increased two-
fold in rats and rabbits and six-fold in dogs by cholic,

taurocholic, and dehydrocholic acids (624). In general,

BSP, eosine, fluorescein, ioglycamide, phenol red, and

phlorizin are choleretic and increase bile production by

the osmotic activity of the chemical in bile (309). How-
ever, the effect of these compounds on bile flow is dose-

dependent. For example, low doses of BSP produce chol-
eresis in dogs (493), but higher doses in rats (948) and

mice (428) are cholestatic.
Several xenobiotics such as probenecid (314), etha-

crynic acid (178, 658), diethyl maleate (73), iodipamide

(342), iodoxamate (96, 329), ioglycamide (750), 1-chloro-

2,4-dinitrobenzene-5-glutathione (1225), BSP-glutathi-

one (71, 340), dihydroxydibutyl ether (215), valproic acid
(252, 253, 1234, 1236), naltrexone (995), 6,7-dimethylles-

culetin (1158), and genipin and patrinoside (1159) stim-
ulate bile flow in rats or dogs. Choleresis induced by

these compounds occurs immediately after acute admin-

istration and is predominantly due to the osmotic activity

of the compound and/or its metabolites. However, the

volume excreted per microequivalent of chemical exceeds
the theoretical maximal increment in bile flow (7 �tl/
�smol) anticipated for most of the above xenobiotics
(diethyl maleate, 13 �tl in rat and 17 �l in dog; iodipamide,

iodoxamate, and ioglycamide, 22 �tl; valproic acid, 16 �tl).
Values for BSP-glutathione and taurocholate are 16 and

7 to 14 �d/zmol, respectively (71, 493, 1080). Apparently,
other determinants of canalicular secretion are also stim-

ulated.

Other substances that induce choleresis by stimulating

bile acid-independent flow include theophylline and

cAMP (70), hydrocortisone (276, 759), thyroxine (717),
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12 KLAASSEN AND WATKINS

glucagon (70), and possibly vasopressin (941). The hy-

polipidemic drug, nafenopin, increases liver weight (382)
and promotes a profound choleresis in rats (732) al-

though the mechanism for choleresis is not completely
understood. In addition, dihydroxydibutyl ether in-

creases canalicular bile flow without affecting bile acid
excretion (215). Administration of non-toxic doses of
perhexiline maleate stimulates bile flow and bile acid

excretion but inhibits BSP transport maximum (Tm) and
its choleretic effect (494). Tienilic acid is choleretic when

administered intravenously and does not undergo entero-
hepatic circulation (736). Bucolome, a non-steroidal,

anti-inflammatory drug, produces a pronounced choler-
esis without increasing bile acid excretion (617, 618).
Although 27 jzl of bile are excreted per micromole of
bucolome, the choleresis may not be due to the osmotic
properties of the drug as only small amounts are excreted
into bile.

3. Microsomal Enzyme Inducers. Phenobarbital and
some other barbiturates enhance bile flow and the biliary
clearance ofdrugs and endogenous metabolites (159, 620,

621, 663, 992). The time course of bile flow enhancement
does not correlate with increased liver weight or micro-
somal enzyme activity, and other enzyme inducers such

as 3-methylcholanthrene fail to stimulate bile production
(619, 640). Phenobarbital apparently stimulates bile
acid-independent flow in the rat (102, 622, 900) and
rhesus monkey (962). This increase in bile acid-inde-

pendent flow might be mediated through an increase in
Na�-K�-ATPase (968, 1091). Other microsomal enzyme
inducers that are choleretic include carbutamide (1198),

diazepam (459), pregnenolone-16a-carbonitrile (PCN),
and spironolactone (1110, 1300). The enzyme inducer
and hypolipidemic agent clofibrate stimulates bile acid-
independent flow and decreases biliary cholesterol excre-
tion (697).

B. Cholestasis

Cholestasis is bile flow stagnation which is usually
accompanied by increased levels of biliary substances in
blood. Common bile duct stones, sclerosing cholangitis,
or cancer of the biliary tree or the pancreas can obstruct

bile flow and produce extrahepatic cholestasis. Intralob-

ular obstruction, which occurs during cirrhosis or inflam-
matory processes, can also cause cholestasis (244). In

contrast, drug-induced “intrahepatic cholestasis” is ap-
parently due to biochemical interference with cellular

function (1298). This term emphasizes functional de-
rangement of the hepatocanalicular bile secretory system
and attempts to differentiate it from other mechanisms
that could account for accumulation of biliary constitu-
ents in plasma and clinical jaundice. Intrahepatic cho-
lestasis has been reviewed extensively (85, 101, 384, 555,
927, 931, 932, 972, 1028, 1054, 1298).

Our present understanding of the pathogenic mecha-
nisms involved in chemical-induced cholestasis is incom-
plete. Cholestatic lesions, which are often morphologi-

cally and functionally similar to those observed clinically,

can be induced by chemicals in laboratory animals. How-
ever, no experimental model of cholestasis has been

successfully developed which duplicates all the manifes-
tations observed in man. Investigations on experimental

intrahepatic cholestasis suggest that several different
functional alterations may be important. Targets of cho-
lestatic chemicals may be the lipid phase of several cell

structures: the sinusoidal and/or canalicular membranes,
the endoplasmic reticulum, and the mitochondria. Inter-

actions with lipids or proteins within these membranes

can impair cellular functions such as the activity of
carrier proteins or microsomal enzymes and the intra-

cellular energy supply. Other targets could be cytoplas-
mic binding proteins and possibly the microfilaments.

Interference with other regulatory processes in the cell
may also be important. However, the primary event of

drug-induced intrahepatic cholestasis is unknown (932,
1054).

Several chemicals that have been extensively studied
will be discussed to facilitate our understanding of bile

formation and biliary excretion. A more comprehensive

listing of cholestatic agents may be obtained from several
reviews (669, 905, 928, 931, 1297, 1298).

1. Endogenou.s Compounds. a. BILE ACIDS. The toxic

effects of the monohydroxy bile salt, lithocholate, have

been known since Hoisti described a ductular cell reac-
tion in rabbits fed desiccated hog bile (503, 504). Later

Javitt (554) reported rapid onset of cholestasis in rats

after intravenous infusion of taurolithocholic acid. One

hypothesis for this toxic response stated that aqueous

solubility of sodium salts of lithocholate and its conju-
gates is lower than that ofpotassium salts (1099). Secre-

tion of the bile acid from a high K�/low Na� intracellular
environment to a high Na�/low K� biliary environment
could result in intracanalicular precipitation of sodium

taurolithocholate (557, 1099). Abolition of cholestasis by

simultaneous infusion of primary bile acids is consistent
with this hypothesis (557, 944). The more soluble 3-a-

sulfates of tauro- and glycolithocholate are less potent

cholestatic agents (346), a response that does not result

from a reduced hepatic clearance or biliary excretion of

these metabolites (740). Additional studies support the

notion that formation of insoluble salts in the hepatocyte

or the canalicular lumen may initiate hepatic injury and

cholestasis (163). Administration of di- and trihydroxy

bile acids prevents or reverses lithocholate-induced cho-
lestasis (576, 718).

More recent studies indicate lithocholic acid directly

affects the structure, composition, and function of the
canalicular membrane (575-577, 718, 813). Na�-K�-
ATPase activity is decreased in hepatocyte plasma mem-

branes isolated from rats with reduced bile flow after
treatment with taurolithocholate (969). Cholestasis in-
duced by monohydroxy bile acids partially results from

inhibition of the ATPase which may be due to loss of
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enzyme or decreased membrane fluidity. Significant
quantities of free cholesterol are released into the cana-

liculi from its limiting membrane within minutes of an
intravenous injection of taurolithocholate (122). This

drastic change in membrane composition could modify
active and passive transport properties of the hepato-
cytes and induce cholestasis. Recent preliminary data
indicate that inhibitors of protein synthesis apparently

block the cholestatic response to lithocholic acid, sug-

gesting that the microsomes may be potentially involved
in mediating the cholestasis (1293). Studies in rats with

bile fistulas indicate that taurolithocholate-sulfate has
little effect on bile flow; lithocholate-sulfate depresses

bile flow by 20% while glycolithocholate-sulfate reduces
bile flow by 60% in a dose-dependent manner (1292).

Lithocholate-sulfate, mainly excreted as the taurine con-

jugate, appears in bile soon after administration and does
not produce morphological changes as evaluated by elec-

tron microscopy. In contrast, glycolithocholate sulfate
produced membrane-bound cytoplasmic vacuoles as early

as 10 mm after injection while appearance of the bile

acid in bile was delayed. Thus, sulfated glycolithocholic

acid is cholestatic in rats by a mechanism apparently

different from that of lithocholic acid (1292).

The transmembrane potential of the hepatocyte, an

indicator of the structural integrity of the plasmalemma,

is altered following administration of bile acid (874).
Hyperpolarization was observed after treatment with

taurolithocholate at doses that decrease bile flow and
hepatobiliary permeability (874). In contrast, taurocho-

late produces slight depolarization and increases in bile

flow and permeability. However, lack of understanding

ofthe mechanisms which maintain the resting membrane

potential in hepatocytes makes accurate interpretation
of these data difficult.

Intrabiliary pressure generated during retrograde in-
trabiliary infusion of saline was increased while bile flow

decreased after intravenous infusion of taurolithocholate
(552). Simultaneous infusion of taurocholate or glyco-

cholate with taurolithocholate prevented the rise in in-
trabiliary pressure and cholestasis, while the choleretic

bile acids decreased intrabiliary pressure. These changes

in intrabiliary pressure were likely the result, and not

the cause, of more fundamental alterations of bile for-
mation and hepatocyte morphology.

Bile acids other than lithocholic acid and its conjugates

are also cholestatic. Drew and Priestly (264) ranked the
cholestatic potency of three bile acids as taurodeoxycho-

late > taurochenodeoxycholate > taurocholate when in-
fused into rats. Bile acid overload appears to lead directly
to cholestasis. Administration of tauroursodeoxycholate

prevented taurocholate-induced cholestasis (612). Addi-

tional studies indicate the allo-monohydroxy bile acids
are cholestatic in rats (1215) and that a) 3-�3-hydroxy-5-

a-cholanic acid (allo analog) is a more potent cholestatic

agent than the 5-fl analog; b) sulfation does not reduce

or prevent depression of bile flow; and c) allo-monohy-

droxy cholanic acid causes dilatation of canaliculi with

partial or total loss of microvilli and formation of pen-
canalicular diverticuli. A recent report suggests that the

potency of dihydrotestosterone glucunonide is greater

than the allo bile acids which is greater than taurolith-
ocholate in producing cholestasis (818). The order of
potency ofbile acids to produce hemolysis (892) is similar

to their cholestatic potential. The reproducible, reversi-
ble cholestatic response induced in rats by intravenous

bile acid administration may be useful in studying the

characteristics of intrahepatic cholestasis. However, at-
tempts to modify this response by drugs that produce
cholestasis in man (chlorpromazine and erythromycin)

do not appear to provide a suitable toxicological approach

to prediction of their cholestatic potential (265).

b. MANGANESE-BILIRUBIN. Early studies by Witzleben
and colleagues (1274-1277) indicate that acute intrave-
nous administration of manganese sulfate reduces bile
flow and the Tm for bilirubin excretion into bile, and

produces ultrastructural changes resembling the choles-

tatic response. Bile flow was further reduced in a dose-
dependent manner after injection of bilirubin. In addi-

tion, the manganese-induced ultrastructural changes

were exacerbated by bilirubin and the cholestatic mech-

anism was postulated to involve intracanalicular precip-

itation of a manganese-bilirubin complex. However,

when BSP was infused into the animals to prevent the

manganese-bilirubin cholestasis, biliary excretion of
manganese was significantly increased. Hence, the con-

centration of manganese in bile may not be a determining

factor but the interaction between manganese and bili-

rubin at the level of the hepatocyte may be more impor-

tant.
Use of the manganese-bilirubin-induced cholestasis as

an experimental tool has been developed (236-238).
Combination of low, non-cholestatic doses of manganese

and bilirubin produces a rapid and reversible reduction
in bile flow if the substances are injected in proper

sequence and time interval (634), i.e. manganese first

followed by bilirubin 15 minutes later. Recently, de-

Lamirande and Plaa (239) demonstrated that 1,3-buta-
nediol, a potentiator of haloalkane hepatotoxicity (480),

exacerbated manganese-bilirubin-, taurolithocholate-,
and a-naphthylisothiocyanate-induced cholestasis. Po-

tentiation of manganese-bilirubin cholestasis could occur

by enhancement of biotransformation leading to in-
creased bilirubin availability and/or increased suscepti-

bility of cellular constituents to maganese. A recent
report notes a marked modification in the amount of bile

canalicular membranes obtained by differential centrif-

ugation after manganese-bilirubin. These authors sug-

gest that manganese induces changes in the membrane
lipid layer that permits bilirubin incorporation and sub-

sequent cholestasis (240).

2. Drugs. a. STEROIDS. Cholestasis induced by ana-
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14 KLAASSEN AND WATKINS

bolic and contraceptive steroids has been observed in
humans and laboratory animals (928). In humans, estra-

diol, estriol, and oral contraceptives provoke a reversible

retention of BSP and an increase in plasma alkaline
phosphatase activity (679, 683, 861). Estrone produces a
30% reduction of bile flow in female rats during both the

basal period and during dehydrocholate-induced choler-
esis (352). Rats given ethinylestradiol for 5 days develop

hepatomegaly and depression of both basal and BSP-

stimulated bile flow (492). Estrone causes a 50% decrease

in steady-state BSP excretion by affecting its active

transport into bile. Similar effects have been observed
after ethinylestradiol (446, 683). Estradiol-17f3 decreased
bile flow and the biliary excretion of diphenylhydantoin
in perfused rat liver and in vivo (1220). Chronic estrogen

administration reduced biliary excretion of BSP, biliru-
bin, and other organic anions in humans (203, 714, 821)

and rats (376, 474, 475).

Anabolic steroids such as methyltestosterone and nor-

ethandrolone produce dose-related increases in BSP re-
tention (472, 726, 1205). Norbolethone also impairs
clearance of BSP and indocyanine green in isolated

perfused rat livers (79) and decreases bile flow in higher

concentrations. Furthermore, norethandrolone, estra-
diol, and progesterone inhibit taurocholate uptake into
isolated hepatocytes (1055).

Estrogens inhibit bile flow of both bile acid-dependent

(446, 805, 913) and -independent (446, 805) fractions.

These effects may result from increased permeability of

the biliary tree (352, 913), increased microviscosity of

hepatocyte membranes (595, 1091), or a decrease in

concentration of Na�-K�-ATPase (233, 474, 968), but
are not due to an alteration in bile acid carriers (1090).

Recent evidence indicates the D-ring glucuronide con-
jugate of estradiol is cholestatic in rats (804). In fact,

intravenous injection of several steroids conjugated with-
glucuronic acid on the D-ring, but not the A-ring, induces

an immediate, dose-related, reversible cholestasis. Thus

the cholestatic effect of several steroids might be due to

the glucuronide conjugate (805).
Administration of phenobarbital, which increases the

bile acid-independent fraction of bile flow, reverses the

ethinylestradiol-induced cholestasis (440). Furthermore,

clearance of infused taurocholate was reduced in eth-
inylestradiol-treated rats and was not reversed after

phenobarbital pretreatment (446, 1090). Triton WR-
1339, a nonionic detergent, has been shown to return the

decreased membrane fluidity produced by ethinylestra-
diol toward normal and reestablish basal bile flow and

bile acid excretion (1090). However, Hoenig (492) has
recently been unable to reproduce these protective effects

of Triton WR 1339 on ethinylestradiol-induced changes.

Coadministration of 5-adenosylmethionine has also been
shown to reverse the cholestasis produced by ethinyles-

tradiol, possibly by enhancing the biliary excretion of its

methylated metabolites (1143, 1144).

Although the results in laboratory animals may be
indicative of cholestasis, no demonstration of fully de-
veloped intrahepatic lesions has been made. However,

signs very similar to those of intrahepatic cholestasis in
man have been reported in some strains of mice (DS and

C57BL, most sensitive; CBA and C3H, intermediate; and
ICR, least sensitive) but not in Sprague-Dawley rats

(533). These large species and strain differences in sus-

ceptibility to steroid-induced cholestasis may be due to
variations in inherent tissue sensitivity or in biotr#{224}ns-

formation.

b. ERYTHROMYCINS. There are several clinical reports
of mild reversible cholestasis associated with use of the

lauryl sulfate salt of erythromycin propionate (138, 756).
Other derivatives have a lower potential to produce cho-
lestasis (184). Signs of a typical cholestatic reaction

include hyperbilirubinemia, elevation of serum aspartate

aminotransferase and alkaline phosphatase activities,

and fever. An erythromycin-induced cholestatic reaction

in experimental animals in vivo has not been demon-

strated (928). However, reduction of bile flow in the
isolated rat liver has been observed after treatment with

erythromycin propionate and its lauryl sulfate salt (598).

Inability to demonstrate cholestasis in laboratory ani-

mals may be related to species variation. Biliary excre-
tion of erythromycin is the major route of elimination in

the rat, but the importance of this route in man is
equivocal (830, 831). The most cytotoxic erythromycin

in cultured Chang cells (hepatocytes) was the propionate

and relative cytotoxicity correlated with surfactant prop-

erties (272). A similar relationship between surfactant
properties and cytotoxicity in in vitro preparations has
been noted for bile acids, phenothiazines, and the laxa-

tive dioctylsulfosuccinate (275).

c. PHENOTHIAZINES. Intravenous injection of chior-
promazine reduces bile flow in dogs which is accompa-

nied by an increase in bilirubin concentration (1077) and
an increase in intrabiliary pressure (1126). Similar re-
suits were observed in rats (673). Whether chlorproma-

zine-induced neurohumoral changes could be responsible

is unknown (1123). Chiorpromazine decreases bile flow
in monkeys (1003, 1149), which may be due to inhibition

of Mg�- or Na�-K�-ATPases (1023), and depresses the

plasma clearance of BSP (291). Chlorprothixene-induced

cholestasis is also characterized by a decrease in bile
acid-independent flow which depresses the biliary clear-

ance and Tm for BSP (2). Other neuroleptics, cis-thi-
othixene and both cis and trans isomers of flupenthixol

and clopenthixol, cause dose-dependent reductions in
bile flow, and elimination of BSP and indocyanine green
(3). Decreased anion excretion is not due to an effect on

hepatic uptake or BSP conjugation rate. These data

indicate depression of bile acid-independent flow by an

unknown mechanism.

Hepatotoxicity has been demonstrated in isolated per-

fused rat liver as a reduction in bile flow and BSP
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excretion after addition to the perfusate of chlorproma-

zine (594, 599, 1000), other phenothiazines (1185), chlor-

diazepoxide, (5) or chlorprothixene (2). Dose-related

leakage of intracellular enzymes from isolated hepato-
cytes is observed after exposure to phenothiazines (2,
273), thioxanthenes (6), and tricyclic antidepressants (4).

Chlorpromazine also inhibits bile acid excretion when
added to the perfusate in isolated liver of the rat (1166).
Although hepatic perfusion is reduced, the inhibition of

taurocholate excretion by chlorpromazine is predomi-
nantly due to a generalized effect on the plasma mem-

branes of hepatocytes (1165). In fact, these in vitro
results may be manifestations of a direct toxic effect of
the surfactant properties of these drugs (274, 1021, 1288,
1289), implying that surfactant interactions could be a

major mechanism for production of intrahepatic chole-

stasis.
3. Other Chemicals. a. a-NAPHTHYLISOTHIOCYANATE

(ANn’). A single dose ofANIT produces a dose-dependent

cholestasis and hyperbilirubinemia in susceptible species
such as rat and mouse (83, 84, 535, 925). In the rat, onset

of hyperbilirubinemia occurs between 12 and 24 hours

and peaks at 5 days before returning to normal values at

about 7 days. The decrease in bile flow is more abrupt in

mice, occurring between 16 and 24 hours and lasting

about 5 days (263, 535, 746). Hamsters are more resistant

and require larger doses to induce the response whereas

dogs are completely resistant to the cholestatic effects of

acute ANIT administration (535). Even before cessation

of bile flow, ANIT produces retention of BSP (84) and

bilirubin (991) in plasma by affecting hepatic uptake of

the exogenously administered compound. In addition,

ANIT increases plasma alanine aminotransferase activ-

ity in rats (263) and dogs (535). Concentrations of 5’-

nucleotidase (263), BSP, and taurocholate (684) increase

in plasma after ANIT administration thus indicating
that increased leakage across the tight junctions may

contribute to the regurgitation of these substances and
enzymes in blood (684). Incorporation of radiolabeled 5-

aminolevulinic acid into bilirubin increases after ANIT

administration in a dose-related manner (993). This sug-
gests that enhanced bilirubin synthesis may also be

involved in drug-induced hyperbilirubinemia. Finally,

ANIT causes an impairment of microsomal enzyme ac-

tivity (150, 263, 432, 929).
Pretreatment of rats with inhibitors of protein and

RNA synthesis block ANIT-induced hyperbilirubinemia
and cholestasis (536, 1186). A direct effect of these in-

hibitors on the enzymes involved in ANIT biotransfor-
mation is possible (156, 748, 1095) but not completely

established. However, these inhibitors do not affect early
BSP retention or prolong pentobarbital-sleeping time

(537).
Hepatic clearance of exogenously administered biliru-

bin is reduced in ANIT-treated rats and mice before

complete cessation of bile flow occurs (991). Moreover,

the maximal rate of bilirubin excretion into bile is sig-

nificantly diminished. ANIT decreases the uptake of

bilirubin into the liver even in mice with bile duct ligation

but does not influence bilirubin conjugation. Thus, ANIT
appears to have a direct effect on hepatic uptake, storage,

and biliary excretion. However, the mechanism of the

acute action of ANIT is complex and further studies are
needed to clarify the causes of cholestasis.

b. CHOLEPHILIC ANIONS. Hepatic transport of chole-
philic organic anions has been widely studied to elucidate

the mechanisms of bile production, hepatic uptake, and

elimination. Indocyanine green, rose bengal, unconju-
gated BSP, and bromcresol green are cholestatic in rats
and mice, and eosine decreases bile flow only in mice
when administered at doses above the Tm (425, 428). The

cholestatic effects of these anions is greater in mice that
have a higher basal bile flow rate (428). Cholephils that

have a low biliary Tm tend to be cholestatic while those
with a high biliary Tm tend to be choleretic (428). The
cholestatic effect appears to be due to accumulation of

cholephils in the liver because of their limited rate of

excretion. Toxic effects of these organic acids as mani-

fested by a decreased bile flow may be due to inhibition

of mitochondrial respiration (25, 149, 425, 428, 604, 705,

706) or Mg�- and Na�-K�-ATPases (704, 705, 796, 1043,
1044). Other possible mechanisms for cholestasis are
discussed in the review of Plaa and Priestly (928).

c. MISCELLANEOUS. Experimental hypothermia in-

duced by administration of anesthetics to rats decreases

bile flow and biliary excretion ofbilirubin and BSP (990).

Other studies in rats and rabbits indicate that hypother-
mia markedly reduces bile flow, bile acid excretion, and

bile acid-independent flow (757). The last effect is

thought to be due to a decrease in Na�-K�-ATPase

activity.
Cholestasis can be induced by administration of phal-

loidin to rats (268, 269, 297, 312). A decrease in bile acid

secretion and an increase in the bile/plasma ratios of
inulin and sucrose are observed. Freeze fracture replicas

reveal alterations of the junctional complex that sepa-

rates the canalicular lumen from the lateral intercellular

space. A microfilament-mediated change in junctional

permeability might permit efflux of biliary constituents

into intercellular space during phalloidin-induced cho-

lestasis. Rats made cholestatic by bile duct ligation sur-
vive phalloidin poisoning because uptake of demethyl-
phalloin is depressed 75% after 4 hours of ligation (1228).
Bile acids prevent phalloidin toxicity in isolated hepa-

tocytes (366) by inhibition of toxin uptake (916, 918).

Aflatoxin B1 is rapidly taken up by isolated perfused
rat livers and approximately 30% of the dose is excreted

into bile in 4 hours. Bile flow decreases after 90 minutes

and is completely stopped by 4 hours, indicating complete
cholestasis (1193).

The antibiotics, novobiocin and rifampicin, produce

jaundice and BSP retention (669, 723, 921), which may
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be due to inhibition of hepatic uptake of organic anions
or inhibition of UDP-glucuronosyltransferase (41, 703,
1104). Rifampicin reduced the biliary excretion of war-
farm by 56% (1284).

The oral hypoglycemic drugs, carbutamide, chlorpro-

pamide, and tolbutamide, produce a very low incidence
of hepatic reactions including elevated alkaline phospha-

tase activity and cholestatic jaundice (709). Endotoxin

from Escherichia coli decreases bile flow in the isolated

perfused liver of the rat (1195) which may be accounted
for by a decrease in Na�-K�-ATPase (1196). Since the

endotoxin also causes impairment of BSP and indocy-
anine green clearance, circulating endotoxin may con-
tribute to the production of intrahepatic cholestasis ob-

served during bacterial infection (1197). Endotoxin is
concentrated in liver because two thirds of an intrave-
nous dose is recovered in the organ 8 hours after admin-

istration while about 7% is excreted into bile (767).
However, the mechanisms for uptake and secretion re-

main obscure.
In allergic hepatitis, lymphocytes elaborate macro-

phage migration inhibitory factor which, when adminis-
tered via a mesenteric vein in rats, produces a marked

reduction in bile flow and bile acid secretion (815). His-
tological changes resemble those for intrahepatic chole-
stasis and include dilatation of bile canaliculi and loss of
microvilli. This factor is not produced by lymphocytes
from normal patients. The mechanism whereby this fac-

tor from patients with hepatitis induces cholestasis in
rats is not understood.

Recently, the tetradecapeptide hormone, somatostatin,
was shown to inhibit basal and food-stimulated biliary

secretion in the dog (806). Studies in rats indicate so-
matostatin decreases bile flow by 30%, bile acid secretion
by 35% to 45%, and the bile acid-independent fraction
of canalicular bile flow. Endogenous bilirubin excretion
is not affected (984). A similar somatostatin-induced
decrease in bile flow has been observed in dogs (502).
Other natural products that induce cholestasis include
icterogenin, 22 fl-angeloyloxyoleanolic acid, and spori-

desmin (283).
Effects of ethanol on bile formation have been re-

viewed recently (1147). Acute administration produces
an apparent dose-related reduction in bile flow and bile
acid secretion in dogs, rats, and humans. The acute
response is present even if the animal has been fed
alcohol chronically. This cholestastic effect is probably
due to inhibition ofbile acid-dependent secretion. Biliary
excretion of BSP and indocyanine green is decreased by

acute ethanol administration. Elimination of propoxy-
phene (864) and lorazepam (510) on first pass through
the liver is decreased during acute ethanol infusions. Low

ethanol exposure for 3 days depresses transport of meth-
ylfolate into bile (1132). Chronic exposure to ethanol

apparently stimulates both bile acid-dependent and
-independent fractions of canalicular bile flow. Mecha-
nisms for this effect involve alterations in rates of hepatic

bile acid synthesis or degradation, intestinal metabolic
pathways, and the enterohepatic circulation.

Although the central theme of this review is biliary
excretion, understanding the proposed mechanisms of

cholestasis assists our comprehension of bile formation

and biliary excretion. Based on the aforementioned dis-
cussion, the following mechanisms may be involved in-
intrahepatic cholestasis: 1) impairment of sinusoidal

membrane function of hepatic uptake; 2) interference
with intracellular binding and distribution; 3) altered

bile acid metabolism; 4) interference with mitochondrial
energy supply; 5) morphological changes in canalicular
membrane such as loss of microvilli and membrane en-
zymes; 6) disruption of microtubule and microfilament

formation and function; and 7) interference with cana-

licular bile elaboration (928, 972, 1028, 1054).

C. Cholelithiasis

Cholelithiasis, or gallstone disease, is associated with

insolubility of cholesterol since it is the predominant

solid constituent of gallstones (88, 1153). Cholesterol is
maintained in solution in bile by formation of mixed
micelles consisting of bile acids, cholesterol, and phos-

pholipids (162, 843, 1097, 1098, 1100). Solubility of cho-
lesterol depends on the relative concentrations of these
three biliary constituents. This relationship can be illus-

trated by triangular coordinates (fig. 5) which can distin-
guish bile from patients with cholesterol stones from bile

of those without (17). Bile from patients with stones is
supersaturated with cholesterol (1102, 1207, 1208) and

the predominant components of biliary calculi are cho-
lesterol and insoluble calcium salts (1153).

Lithogenesis results from some metabolic defect in
liver and may be due to excessive synthesis and excretion

of cholesterol, a relative lack of bile acids, or both (438,
602, 853, 961, 1089, 1207, 1208). Increased synthesis and
excretion of cholesterol are the predominant events in
obese patients (107). However, in the majority of gall-

stone-forming patients, diminished secretion ofbile acids
is a fundamental defect that reduces the total body pool

of bile acids (1207, 1208). Currently, the most accepted
view is that there is an increased cycling frequency of
bile acids which suppresses bile acid synthesis (816, 856,

1071). Enzymatic activities of hepatic fl-hydroxy-fl-
methylglutaryl-CoA reductase are higher, and choles-
terol-7-a-hydroxylase lower, in patients with gallstones
compared to those without (849). Defective conjugation
ofbilirubin monoglucuronide could result in an increased
proportion of this poorly soluble conjugate in bile which
may act as a nucleation site for gallstone formation in

humans (281). In addition, the functional integrity of the
gallbladder is important in maintaining normal bile com-

position (930). Micellar binding accounts for 80% of the
calcium in hepatic bile but only 50% in gallbladder bile,
suggesting that calcium binding in soluble micelles low-

ers the activity of calcium and hence its liability to
precipitate as gallstone nuclei (1267). Administration of
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FIG. 5. Triangular coordinates illustrating the relationship of bile

acids, cholesterol, and phospholipids. Bile from patients with choles-

terol stones can be distinguished from bile of those without.

clofibrate (218) and estrogens (88) increases the litho-

genicity of bile and has been associated with a high
incidence of cholelithiasis.

Medical treatment of gallstones has been reviewed,

and drug therapy is directed toward decreasing the lith-
ogenicity of bile by increasing the bile acid pool (123,

499, 1098). Chronic administration of exogenous bile
acids to man (taurocholate, 380; chenodeoxycholate, 64,

220, 229, 540, 550, 775, 1173; ursodeoxycholate, 47, 325,
326, 544, 768, 770, 780, 1020, 1138) decreases cholesterol
saturation in bile and induces gallstone dissolution in
the majority ofpatients with radiolucent gallstones. Lith-

ogenicity is reduced decreasing the proportion of choles-

terol relative to bile acids and lecithin (13) and perhaps
by reducing hydroxymethylglutaryl-CoA reductase (602,

1020). Correlation between cholesterol and bile acid se-
cretion suggests cholesterol transfer across the canalic-

ular membrane is best explained on the basis of incor-
poration into lecithin-bile acid mixed micelles (461).
Secretion of these lipids depends on bile acid secretion
(262, 1246, 1250). However, bile acid secretion rate
(1224), bile acid structure (390, 496, 1103), and species

of animal being studied (91, 1173) can all alter bile lipid

composition.

VI. Hepatic Elimination of Xenobiotics

The liver probably developed evolutionarily as a union

of a secretory diverticulum of gut endoderm and as a
storage organ, and the hepatic portal venous system

draining the intestines preceded formation of a proper
liver (33). The anatomical position of this organ is par-
ticularly advantageous for removing toxicants from the
blood after absorption by the gastrointestinal tract. Since
blood from the intestine passes through the liver prior

to systemic circulation, the liver can theoretically remove
a chemical from the portal circulation and decrease or

prevent distribution to other parts of the body. The liver

is also unique in that chemicals in plasma come in direct
contact with the hepatocytes which are not separated

from the plasma by vascular tissue as in other organs.
Chemicals entering the systemic circulation may be ex-
creted by the kidney or liver or may be biotransformed
prior to excretion. Factors determining whether a xeno-
biotic is eliminated via urine or bile are largely unknown

(245, 246, 1114). The relative importance of either route
in the excretion of foreign compounds is difficult to

ascertain. Studies have often drawn conclusions after

quantifying the amount of chemical in urine or feces. In
experiments where a chemical was administered orally
and later found in feces, the importance of biliary excre-
tion was often minimized by concluding that the fecal

fraction resulted from poor absorption and not biliary
excretion. Experiments in which the chemical was ad-

ministered intravenously are generally easier to inter-
pret. However, the importance of biliary excretion may

not be recognized if the compound undergoes an entero-
hepatic circulation and is eventually cleared from the

body by the kidneys and may be overestimated if the

chemical is excreted across the intestinal wall rather
than into bile (1008, 1009). Thus, accurate determination

of the role that biliary excretion plays in the elimination
of a xenobiotic from the body requires an experimental

design which permits analysis of bile for content of the

chemical and its metabolites and evaluation of these
results in relation to experiments where enterohepatic
circulation, plasma disappearance, and urinary and fecal
excretion of that compound are also measured.

A. First-Pass Effect

The liver is capable of removing chemicals from blood
in one pass through the liver. This phenomenon has been
called the “first-pass effect” or presystemic hepatic elim-
ination (385, 386). All chemicals absorbed from the gas-

trointestinal tract, except for the mouth and rectum,
pass through the liver before reaching the general sys-
temic circulation. In addition to extraction and/or bio-
transformation in the liver, metabolism in intestine and
lung and excretion by the lung can also contribute to
presystemic elimination. Theoretically, the liver can re-

move xenobiotics from the blood after absorption from
the gastrointestinal tract and prevent their distribution

to other parts of the body. However, large interindividual
differences in first-pass effect due to variations in hepatic

extraction ratios permit different amounts of a chemical

to enter the systemic circulation in different patients.
Numerous chemicals are known or expected to undergo

a first-pass effect. These include physiological com-
pounds such as bile acids (21, 36, 393, 497, 498, 528, 542,
769, 779, 879, 943), and the pharmacological agents pro-
pranolol (1075, 1076), lidocaine (1134), oxyphenbutazone

(1258), coumarin (988), sodium chromoglycate (201),
propoxyphene (864, 906, 1278), nortriptyline (1209), im-

ipramine (82, 1128), lormetazepam (517), nitroglycerin
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18 KLAASSEN AND WATKINS

(841), methyltestosterone (31), alprenolol (437), mor-
phine (542), nalorphine (543), pentazocine (293), ouabain

(526), phenol-3,6-dibromphthalein disulfonate (526),
amaranth (526), insulin (1187), diethylstilbestrol (1176),

ethinylestradiol (484), Org 6368 (20), prazosin (1011),
and manganese chloride (1175). In fact, more than 90%
of a low dose of propranolol is cleared from blood after a
single pass through the liver (1073). However, presys-
temic elimination of propranolol appears saturable; no

drug is found in the systemic blood when a dose of 0.8
mg/kg is administered to humans or 40 mg/kg to rats.

With higher doses, a linear increase in the amount of

propranolol in blood is found (1004). Also, the first-pass
effect is not different for l-propranolol or dl-propranolol

(545). In addition, hepatic biotransformation of a parent
drug may produce metabolites that also undergo presys-

temic elimination. For example, approximately 90% of
monoethylglycine xylidide, a metabolite of lidocaine, is

extracted after a single pass through the liver (896), and
sequential first-pass elimination of acetaminophen, the
metabolite of phenacetin, has been demonstrated (893).

The fractional uptake of insulin in man decreases with
increasing insulin dose and is lower during induced by-

perglycemia than at fasting (1187). Results suggest he-
patic uptake of insulin depends upon plasma glucose
concentrations. Clearance from blood of drugs adminis-

tered systemically with significant first-pass effects is
highly dependent upon hepatic blood flow, although pre-

systemic extraction is independent of liver blood flow
(850, 851, 894-896). For example, clearance of lidocaine
in humans was reduced after administration of propran-
olol (860). Clearance and metabolism of propranolol and

extraction of indocyanine green were decreased by a 25%
reduction in hepatic blood flow induced by cimetidine in
humans (327). Short-term exposure to polychlorinated
biphenyls enhances the intrinsic clearance and first-pass
effect of pentobarbital in rats (1133). A pharmacokinetic
model to differentiate preabsorptive, gut epithelial, and
bepatic first-pass metabolism has been described (205).

Experiments to determine the effect of presystemic
elimination on the toxicity of xenobiotics need to be
performed. Existence of a first-pass effect would be de-
sirable for a non-therapeutic, toxic compound, prevent-
ing its distribution to other parts of the body. However,

in cases of decreased hepatic function, the chemical may

escape the first-pass effect and produce a greater toxicity.
If the toxicant is biotransformed by the liver to a more

toxic metabolite that re-enters the blood, an increase in
presystemic elimination may increase the toxicity of the
chemical (640).

B. Hepatic Clearance

Clearance is a precise physiological measurement of
the efficiency of xenobiotic elimination. This concept is
closely analogous to those in nephrology and provides a
measure which changes linearly with respect to a varia-
tion in function. Total systemic clearance is the sum of

the efficiency of each route of elimination and does not

indicate the site or rate-limiting process. However, for
many chemicals, the liver is the major site of elimination

and systemic clearance reflects hepatic clearance.
Clearance is the volume of blood from which a drug is

completely removed per unit time (1263). At steady state,
xenobiotic elimination by the liver can be estimated from
the product of hepatic blood flow (QH) and the extraction
ratio (Ej4:

C1H QHEH QH[Ca C�]

where EH �5 the arterial-venous concentration difference

across the liver, C0 is the concentration in mixed portal
venous and hepatic arterial blood and C� is the concen-

tration in hepatic venous blood. Thus, hepatic clearance
is a function of liver blood flow and the ability of the

liver to extract the xenobiotic as blood perfuses the
hepatic sinusoids. To overcome the modifying effect of
flow on extraction, total intrinsic clearance may be used
to express the maximal ability of the liver to irreversibly
remove a chemical by all pathways in the absence of any

blood flow limitations. When the hepatocyte plasma
membrane is highly permeable to a particular compound,

EH may be expressed in terms of intrinsic clearance,

ClINT, (132, 389, 850) such that:

!�11 I’� ClINT
‘-‘IH �H �

�H + �-‘1INT

Physiologically, intrinsic clearance is an index of the
rate at which a substance crosses the hepatic parenchy-

ma! sinusoidal membrane. Intrinsic clearance and liver
blood flow are two independent biological variables which
influence hepatic clearance and extraction. When intrin-
sic clearance is low, liver blood flow is adequate to
maintain hepatic clearance at the same level as intrinsic

clearance. If intrinsic clearance is high, then hepatic
blood flow becomes rate-limiting and total hepatic clear-
ance varies in direct proportion to flow. Hepatic clear-

ance is partly flow-dependent for chemicals with inter-
mediate intrinsic values.

Factors that cen alter hepatic blood flow can be phys-
iological, pathological, and/or pharmacological (136, 137,

336, 850, 956, 957, 1261). Physiological factors that de-
crease flow include upright posture, thermal stress, ex-
ercise, (224) and volume depletion (476), while food and

supine posture increase hepatic blood flow. Hepatic cir-
rhosis, cardiovascular collapse, renal hypertension, and

congestive heart failure are pathological conditions that
decrease hepatic blood flow (1262). Myocardial ischemia
produced by occlusion of coronary arteries causes a 60%
reduction in hepatic blood flow (377). A diminished
sinusoidal perfusion may be responsible for the impaired

elimination of propranolol observed in some patients
(923) and during experimental cirrhosis (1283). Admin-

istration of propranolol, norepinephrine (336), and gen-
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eral anesthetics (449, 868, 1068) decrease hepatic blood
flow, while glucagon, isoproterenol, and repeated admin-

istration of phenobarbital increase flow (867, 868). Nor-
mal hepatic perfusion in several species, including man,

is 1 ml/min/g of liver (418, 1003). Hepatic blood flow
determined under a variety of physiological and patho-

logical conditions or after drug administration is 0.5 to
2.0 ml/min/g of liver (133, 224, 1134).

Blood concentration of a chemical after intravenous

and oral administration can be affected by a decrease in
hepatic blood flow (1263). For a xenobiotic that has low

extraction, systemic clearance and half-life are flow-

independent and the blood concentration/time curve is
similar over a wide range of hepatic blood flows. How-

ever, for a chemical with a high extraction, both clearance
and half-life are flow-dependent after either route of

administration.Thus, a decrease in hepatic blood flow

would increase the half-life of the xenobiotic. Clearance

and half-life for chemicals with intermediate extraction
ratios are dependent on flow to an extent estimated from
knowledge of the extraction ratio.

Alterations of intrinsic clearance can affect the blood
concentration versus time curve of a xenobiotic after

intravenous and oral administration. The major effect of
increasing intrinsic clearance as after microsomal en-

zyme induction is a proportional increase in the effi-
ciency of hepatic extraction. The area under the concen-

tration/time curve and half-life change in inverse pro-

portion to the change in intrinsic clearance. For a com-
pound with a low intrinsic clearance, a twofold increase

in extraction would produce a 50% reduction in half-life.
However, systemic availability after oral administration

decreases only slightly. In contrast, when intrinsic clear-

ance is high, an increase in extraction produces minimal
alteration in clearance or half-life but markedly increases

presystemic elimination after oral administration. Peak

blood levels are decreased and systemic availability is

markedly reduced.

Large changes in the rate of hepatic perfusion may
alter regional distribution of blood flow within hepatic

lobes and influence the magnitude of bile acid-independ-

ent flow without significant changes in oxygen uptake,

aminotransferase release, Na�-K�-ATPase activity, or

evidence of morphological damage (1164).
Many in vivo investigations demonstrating the effect

of liver blood flow on systemic clearance and half-life

and the dependence of this effect on the original extrac-
tion ratio have been reviewed (1261). Studies in isolated

perfused rat liver also demonstrate interrelationships of

extraction rate, liver blood flow rate, kinetic elimination

constants (Km, Vmax), and route of administration with
respect to the blood concentration versus time curve

(133, 597, 1074, 1273). From the hepatic extraction ratio,

one can generalize about the disposition of a xenobiotic.
In particular, compounds with high or low extraction

ratios have definable differences in disposition. If a

chemical has a low extraction ratio due to a small intrin-

sic clearance relative to liver blood flow, then hepatic
clearance and elimination half-life will be independent

of changes in flow but sensitive to hepatic metabolism.
In addition, only a small first-pass effect after oral ad-
ministration will be observed. In contrast, for a com-

pound with a high extraction ratio, hepatic clearance and
half-life will be sensitive to changes in flow and insensi-

tive to alterations in metabolic activity. Such a xeno-

biotic will exhibit a significant first-pass effect after an
oral dose. Chemicals having intermediate extraction ra-

tios have mixed properties, in that clearance is partly

dependent on liver blood flow and hepatic metabolism.

C. Hepatic Uptake

Before a solute located in sinusoidal blood can be
incorporated into the parenchymal cell, the compound

must pass through fenestrations of the sinusoidal epithe-

ha and enter the space of Disse (see fig. 2). Then the
solute contacts the microvilli of the plasma membrane

and uptake occurs. Besides these structural considera-
tions, the velocity of blood flow is an important deter-

minant of the probability of interaction between solute
and microvilli.

The uptake of substances by the liver has been exam-

med by several methods: 1) determination of the rate of
removal of a chemical from plasma after administration;

2) study of the partition between plasma and liver cells
after infusion for a sufficient time to achieve a steady

state; 3) quantification of the hepatic concentration at
various times; 4) examination ofthe ability of the isolated

perfused liver to concentrate a chemical from the perfu-
sate; 5) determination of the ability of isolated or cul-

tured hepatocytes to accumulate a chemical from the
medium; and 6) measurement of xenobiotic influx into
isolated membrane vesicles.

Two methods for the study of hepatic uptake have
been discussed recently (401, 666). The in vivo multiple
indicator dilution technique (223) has been adapted to

study uptake of chemicals at the liver cell surface (401).
This process (fig. 6) has been modeled and outflow pro-

files consist of a throughput component which does not
enter the liver (�‘Cr-labeled red blood cells or albumin

labeled with Evans blue dye) and a return component
which enters the cell and returns to the plasma space to
emerge at the outflow (tritiated water). When the process

is concentrative, the throughput component emerges well
ahead of the returning component by virtue of the en-
larged cellular volume. In a non-concentrative process,

the throughput and returning components are not widely
separated in time. The uptake of tracer rubidium, like

potassium, is a concentrative process while that of tracer
glucose is non-concentrative. When intracellular seques-

tration occurs, the magnitude of the returning compo-
nent in a tracer experiment is reduced and a decreasing

steady state lobular gradient is produced from the pen-
portal to the centnilobular region. Diminution in return-
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FIG. 6. In vivo multiple indicator dilution technique adapted to study uptake of chemicals at liver cell surface. Outflow profiles are a

throughput component which does not enter the liver (51Cr-labeled red blood cells or albumin labeled with Evans blue dye) and a return
component which enters the liver cell and returns to the plasma space to emerge at the outflow (tritiated water).
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ing components has been observed for galactose, BSP,

bilirubin, cholate, taurocholate, and chenodeoxycholate
(401, 967). While this technique has been useful, it is

very labor intensive, and thus most of the work presently

being performed is with isolated hepatocytes.

Suspensions of hepatocytes isolated by the method of
Berry and Friend (98) are particularly advantageous for

examining the characteristics of the hepatic uptake of

chemicals (666, 1053). Isolated hepatocyte suspensions

allow rapid, multiple sampling which permits estimation

of initial velocities and calculation of kinetic parameters.

These cells are useful for studying uptake processes
because there is no interference from unspecific binding

to plasma proteins, different distributional compart-

ments or hemodynamic factors. However, workers must

demonstrate that cell viability is high and maintained

throughout the study. Transport characteristics of sev-

era! classes of compounds have been tabulated recently

(1057) which include bile acids (38, 39, 529, 1051), oua-

bain (284), procainamide ethobromide (285), 3-0-meth-

ylglucose, D-fructose, and D-galactose (221, 222), mor-

phine and nalorphine (541), BSP (1058, 1059), BSP-

glutathione (1053), insulin (1171), thiamine (755), bili-

rubin (525), parathion (838), lipoproteins (886, 1199),
iron (434, 435), zinc (1121), cadmium (320-322, 1119),

estrogens (1060), taurine (464), alanine (687), and other

amino acids (175, 292, 328, 571, 721, 722). The majority
of these organic compounds appear to be taken up by a

carrier-mediated system while lipophilic xenobiotics may

pass through the membrane by diffusion (1057). Lido-

caine uptake is not carrier-mediated, and binding to

intracellular components may account for its accumula-

tion in hepatocytes (176).
Recently, hepatic transport of three xenobiotics,

DBSP, d-tubocuranine and ouabain, has been evaluated

in the rat in vivo, in isolated perfused liver, and in

isolated hepatocytes (116). Uptake is similar in vivo and
in the perfused liver for all three substrates. However,

uptake of DBSP and ouabain into isolated hepatocytes

is lower by a factor of 2 to 3, while that of d-tubocuranine

is similar. Rate of secretion from isolated hepatocytes is

identical for DBSP and lower for ouabain and d-tubo-

curarine than that of the in vivo preparation. Results

indicate that transport function is well preserved in

perfused livers and isolated hepatocytes although, for
certain substrates, uptake and/or secretion may be lower

in freshly isolated cells of high viability.
1. Bile Acids. Hepatocellular uptake of taurocholic acid

appears to be saturable in dogs (393) and perfused rat
liver (967). This carrier-mediated transport system is

sodium-dependent (114, 967, 1051) and energy-depend-

ent (1051). Uptake of cholate occurs apparently by both

simple diffusion and a saturable process and undergoes

counter-transport (188) with taurocholate and cheno-
deoxycholate (39). Transport of cholate appears concen-

trative in nature but is complicated by conjugation with

glycine or taurine and protein binding. The relative
potencies of seven bile acids to inhibit cholate or tauro-

cholate uptake suggest several carriers are available for

bile acid uptake which may have affinity for more than

one bile acid (40). The difference in activation energies

between cholate and taurocholate (13.3 and 29 Kcal/mol,
respectively) and selective inhibition of taurocholate up-

take by ouabarn further suggest that multiple carriers

are involved in bile acid transport into the hepatocyte.

Saturable binding sites for taurocholate and cholate have

been demonstrated on rat liver plasma membranes (11).
However, uptake is not rate-limiting in transport from
blood to bile as the maximal velocity of taurocholate

uptake exceeds the secretory Tm by sixfold (967).
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Centrilobular hepatocytes have a higher capacity for

bile acid uptake than periportal cells (1120). While the

Km of each subpopulation was the same, the Vmax of the
centrilobular enriched fraction was 2.03 nmol/min/mg

of protein and that of the periportal-enriched fraction
was 1.57.

The hepatic extraction of taurocholic, glycocolic,
cholic, deoxycholic, and chenodeoxycholic acids is 80%,
65%, 55%, 55%, and 40%, respectively, indicating that

conjugation is more important than the number of hy-
droxyl groups for bile acids to be removed by the liver

(495, 528). Studies determining Km and Vmax for bile acid

uptake into isolated hepatocytes demonstrate that con-
jugation with taurine increases the affinity of the bile

acid for its transport carrier. In contrast, conjugation

with glycine did not affect either Vmax or Km. The trihy-

droxy bile acids have a higher affinity but a lower trans-
porting capacity for the saturable processes than the
dihydroxy bile acids. In vivo hepatic extraction appears
to be more dependent on the affinity of the bile acids for

the carrier system than the capacity at which it can be

transported (592).
Uptake of taurocholate into cultured hepatocytes has

also been shown to be transported by an energy-depend-

ent, saturable system (1050, 1051) that is sodium-de-

pendent (1036). Similar results were recently observed
with isolated rat liver plasma membrane vesicles (538,

1014). Sodium ion-coupled uptake was inhibited by other

bile acids and by preloading the vesicles with Na�. When
the electrical potential difference was changed by anion
replacement, a more negative potential inside stimulated

Na�-dependent taurocholate transport.

Additional studies indicate that bile acids inhibit the

uptake of phallotoxins into isolated hepatocytes (366,

917), suggesting phalloidin and demethylphalloin enter

the hepatocyte via the bile acid carrier. Pretreatment

with numerous xenobiotics reduces the sensitivity of

isolated hepatocytes to phalloidin probably by inhibiting
hepatic uptake of the toxin (918).

2. Bilirubin. Conflicting evidence exists on the cellular
mechanism of bilirubin uptake. Over a wide range of

plasma concentrations, hepatic extraction of bilirubin

approaches 26% with little change in bile flow or bilirubin

conjugation. However, when bolus injections of bilirubin

were used to produce higher levels of unconjugated bili-
rubin in the perfusate than could be attained during

constant infusion, the disappearance rate of bilirubin
from the perfusate decreases with increasing bilirubin

concentrations. These data suggest uptake is a saturable

process (119,903). Other data indicate that deoxycholate
inhibits bilirubin clearance from the plasma (118). More-

over, bilirubin uptake can be defined in terms of Mi-
chaelis-Menten kinetics and is competitively inhibited
by indocyanine green and BSP (1038) but not by tauro-

cholate (903). These data indicate that bilirubin is a
likely substrate for a carrier-mediated uptake mecha-

nism. However, other studies report bilirubin clearance
depends on binding to both albumin (69) and intracel-

lular binding proteins such as ligandin (728).

In isolated hepatocytes, uptake is extremely rapid and

equilibrium between cell and medium is attained within

60 seconds with a 100-fold greater concentration in the
hepatocyte (525). The initial velocity of uptake is linear
with respect to bilirubin concentration from 12.5 to 200

.�M. Pretreatment of cells with various metabolic inhib-
itors or replacement of sodium ion with choline or lith-

ium ion had no effect on bilirubin uptake. Accumulation

was not inhibited by the inclusion of organic acids (BSP

or taurocholate) or steroidal compounds (diethylstilbes-
trol or spironolactone). This study suggests that bilirubin

apparently reaches the cytoplasm simply by passive dif-

fusion; however, the high accumulation probably results
from association with intracellular constituents.

3. Exogenous Organic Anions. Mutant Southdown
sheep with normal bile acid uptake are unable to concen-
trate other organic anions such as BSP, bilirubin, rose

bengal, and indocyanine green (217). This evidence of
separate carrier systems for organic anionic dyes and

bile acids is supported by the observation that taurocho-
late does not inhibit BSP uptake (1059, 1212). At lower

dye concentrations, however, taurocholate can inhibit

uptake of BSP (422) and DBSP (1210). A recent study

indicates that two systems are involved in BSP uptake

by rat hepatocytes and that one carrier is shared with

bile acids (707). Taurocholate inhibition reveals a bile-

acid-sensitive carrier with a 10-fold higher affinity for
BSP than that of the insensitive one, which is probably

the Na�-independent carrier of bile acids (38).

Bilirubin, BSP, and indocyanine green are competitive

substrates for a transport system which follows Michae-

lis-Menten kinetics (400, 1038). Similar results have

been obtained with isolated hepatocytes (1058, 1127,

1200). BSP uptake in isolated cells follows Michaelis-

Menten kinetics only at low substrate concentrations
and is independent of metabolic energy and Na� trans-

port. Taurocholate does not affect uptake while indocy-

anine green inhibits at low concentrations and activates
when BSP is greater than 20 tiM. Similar findings mdi-

cate that DBSP uptake also occurs against an electro-

chemical gradient and utilizes the sodium ion-dependent

carrier (115). Recent work indicates that the hepatic
uptake of BSP-glutathione is substantially lower than
that of BSP, but both compounds share a common trans-
port mechanism (1052). Hepatocytes with poor viability,

as compared to high viability cells, have different kinetic

properties for BSP uptake which suggests that the lower
BSP clearance observed in patients with impaired liver

function may be due to depressed uptake (1059).
Rifamycins, broad-spectrum antibiotics with low tox-

icity, interfere with the elimination of bilirubin, BSP,

and indocyanine green in humans (12) and with hepatic
uptake of indocyanine green (899) and bilirubin and BSP
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(600) in rats. In addition, hepatic transport of taurocho-

late is inhibited by rifamycin SV in isolated perfused rat

liver (688, 689). These antibiotics inhibit cholate uptake

into isolated hepatocytes more than taurocholate uptake

and the inhibition appears to be non-competitive (41).
Furthermore, hepatocyte uptake of rifamycin is a satur-
able carrier-mediated process independent of metabolic

energy and is not inhibited by BSP. However, BSP
uptake is competitively inhibited by rifamycin (703).

Biliary contrast agents are specifically taken up by the
liver and are actively secreted into bile. Uptake into rat

liver slices is biphasic and consists of a non-saturable,

low affinity system and a saturable, high affinity carrier

that may be energy dependent. Inhibition of uptake is

apparently influenced by the affinity of the agent for
plasma albumin (95-97, 741, 749, 750, 819, 822, 823,

1112). Uptake of ethacrynic acid into the isolated rat
liver is mediated by a saturable, energy-dependent, and

partially Na�-dependent transport mechanism. Maximal

velocity of uptake can be increased by raising extracel-
lular Na� concentration (908).

An energy-dependent and saturable system is respon-

sible for the rapid uptake of warfarin but not dicoumarol

(1285). A saturable, active transport system has also

been shown for both uptake and biliary excretion of
orotate which is inhibited by probenecid and p-amino-

hippurate (459). Thus, the hepatic uptake of several

exogenous anions appears to occur by a carrier-mediated

transport system distinct from that of bile acids, but the
number of transport systems and their specificity for

uptake of exogenous organic anions requires further ex-

amination.
4. Exogenous Organic Cations. Rat liver has an efficient

system for uptake and biliary excretion of quaternary

(486, 1031) and tertiary (839) ammonium compounds.
Uptake is not inhibited by bile acids, BSP, or probenecid

(524, 1031). Procainamide ethobromide (PAEB) uptake
by rat liver slices is saturable and can be inhibited by

omission of sodium ion or addition of the metabolic

inhibitors, 2,4-dinitrophenol and iodoacetate (1031). Be-
cause liver slices contain both canalicular and sinusoidal

spaces, it is impossible with this technique to determine

whether this concentration gradient is due to accumula-

tion of PAEB within the hepatocytes or within the bile
canaliculi and sinusoidal spaces. PAEB is positively
charged regardless of pH and if one assumes a membrane

potential of -35 mV (81), a slice/medium concentration
ratio greater than 4 would be needed to demonstrate

uptake against an electrochemical gradient for a cation
if no metabolism or intracellular binding occurred. In the
rat, a liver/plasma ratio of unchanged PAEB of 7 has

been reported (518).

Recently, isolated hepatocytes have been used to dem-

onstrate that PAEB enters the liver by a carrier-medi-
ated, saturable, and energy-dependent uptake process

(285). Initial velocity rates at substrate concentrations

from 30 to 400 �M indicate a Km of 54 �sM and Vmax of
0.13 nmol/min/mg of protein. The process involves ac-

tive transport because uptake against an electrochemical

gradient is evident even after correction for biotransfor-
mation and intracellular binding. This system appears

to be distinct from those responsible for the accumula-
tion of neutral compounds such as ouabain or organic

anions like taurocholate. Whether more than one carrier
is responsible for hepatic uptake of organic cations is not

known. Transport of numerous tertiary amines may

share a similar uptake system with PAEB (839).

5. Neutral Organic Compounds. Farah (323) first sug-

gested that uptake and excretion of ouabain might occur
by active transport because accumulation was inhibited

in rat liver slices by potassium cyanide. Ouabain uptake
is a saturable, energy-dependent process that occurs

against a concentration gradient and is not inhibited by

organic anions or cations (696). Uptake is inhibited by
other neutral steroids such as corticosterone, progester-

one, testosterone, and dehydrocholate (695). These early
studies suggested that bile acids and ouabain might be

transported by the same carrier. However, developmental

studies (651) showed that taurocholate transport was

near adult levels much earlier than that of ouabain.

Hepatic uptake for ouabain has been studied in detail
in isolated hepatocytes (284, 1061). Uptake is saturable,

with a Km of 159 sM and Vmax of L43 nmol/min/mg of
protein, and energy dependent as dinitrophenol, potas-

sium cyanide, and rotenone reduced ouabain transport

into the hepatocytes. Ouabain uptake is independent of

Na�, which also indicates that its uptake is by a different

carrier than that for bile acid transport. Reduction of
incubation temperature from 37#{176}Cto 27#{176}Cgreatly de-

creased uptake velocity, yielding an approximate Qio of

6. Ouabain is transported against a concentration gra-
dient and achieves a cell/medium ratio of about 10 (284).
Similar values have been reported in vivo (79, 1016).

Several steroidal compounds (six hormones and three
cardiac glycosides) inhibit ouabain uptake into isolated
hepatocytes, suggesting that they may share the same

transport system (284). Recent work with hepatocyte

subpopulations indicates ouabain uptake into the centri-

lobular-enriched population was greater than that into

periportal hepatocytes (1020).

The uptake of galactose into isolated hepatocytes ap-
pears to be a carrier-mediated diffusion process where

the rate of uptake greatly exceeds that of biotransfor-
mation (80, 1020). This system is probably different than

that which transports ouabain.
A biphasic system has been demonstrated for cortisol

uptake into isolated hepatocyes (955) before the steroid
becomes bound to intracellular proteins. At low concen-

trations, uptake occurs by two saturable processes with

high and low affinities, respectively, which can be
blocked in the presence of the metabolic inhibitors 2,4-

dinitrophenol or potassium cyanide. At high concentra-
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tions, simple diffusion becomes the major route of cor-

tisol uptake into hepatocytes. Cortisone and corticoster-

one are competitive inhibitors while dexamethasone, es-

trone, and testosterone are non-competitive inhibitors of

cortisol uptake. Additional studies indicate estrone, es-

tradiol, and testosterone also enter hepatocytes by dif-

fusion and by carrier-mediated transport (954). Similar

findings have been observed for the uptake of tri-iodothy-

ronine by isolated (290) and cultured (685, 686) hepato-

cytes.
6. Metals. A biphasic mechanism is involved in the

hepatic uptake of zinc and cadmium. Studies on cadmium

transport in isolated perfused rat liver (361, 362, 606)
and suspensions of isolated hepatocytes (1121) indicate

a simple diffusion phase as well as a carrier-mediated
phase that can be inhibited by zinc. Neither phase is

affected by administration of metabolic inhibitors. Pre-
treatment of rats with cadmium chloride, which increases

hepatic metallothionein content (288, 1073, 1241, 1242,

1272), increases the rate of the diffusion phase of uptake

(1121). This diffusion phase may be related to the intra-
cellular sequestering of cadmium by metallothionein.
Cadmium complexes with dithiols (2,3-dimercaptopro-

panol, dithiothreitol) are rapidly removed from the
plasma by Kupffer cells (1096) while either free or non-
thiol complexes ofcadmium are taken up by parenchymal

cells (154).
A similar biphasic response with the first phase show-

ing characteristics of carrier-mediated transport has

been observed for the uptake of zinc into 3T3 mouse
lymphocytes (1049), isolated rat hepatocytes (1121), and

primary cultures of rat liver cells for zinc (320, 321) and
cadmium (322).

Ferrous iron is taken up by hepatocyte suspensions by

simple diffusion while that of ferric iron is receptor-

mediated. Transferrin-bound iron uptake is biphasic:
receptor-mediated at low concentrations and by diffusion

at higher levels (435). Uptake of ferric iron from iron-
transferrin depends on temperature and the transferrin
concentration and is inhibited by exposure of hepato-
cytes to proteases (1291). These data support the role of
a surface receptor-mediated uptake component.

D. Macromolecules in Hepatic Uptake

1. Membrane Receptors. a. BILE ACIDS. Specific bile

acid binding sites on liver surface membranes have been
postulated to represent the initial step in bile acid trans-

location across the hepatocyte membrane (11). Pretreat-
ment of rats with cycloheximide to block hepatic protein
synthesis reduced bile acid transport capacity to 38% of
control. Values of liver function tests, bile flow, and
histological profiles were all normal. The maximum num-

ber of [14C]cholic acid binding sites was reduced 75% 24
hours after cycloheximide, while no effect was observed
on the activities of the marker enzymes, Na4-K�-ATP-

ase, Mg�-ATPase, or 5’-nucleotidase. The associated
alterations in bile acid transport and the maximum num-

ber of binding sites after cycloheximide suggests these

receptors may be the bile acid carriers (398).

The liver responds to an increased bile acid load by

increasing the bile acid excretory maximum (14, 1092,

1235). This substrate-induced effect produces an increase

in the number of bile acid receptors which may occur via

increased protein synthesis, decreased receptor degra-

dation, or a shifting from a possible intracellular pool to

the surface membrane (1092). Whatever the mechanism,

the number of putative bile acid carriers can apparently

adapt to the taurocholate pool size. Further work is

needed to characterize this bile acid receptor both bio-

chemically and functionally.

b. ORGANIC ANIONS. An integral protein from the

hepatocyte plasma membrane has been isolated that

exhibits a high affinity for BSP (1183). This protein was

separated from an acetone powder of a crude preparation

of rat liver plasma membrane that was subjected to salt

extraction and chromatographed on Sephadex G-100 and

then AG-1X8 resin. Based on BSP binding, this isolation

procedure gave an approximate 40% yield ofBSP binding

protein that can bind 100 nmol of BSP per milligram of

protein. This receptor is a single protein with an appar-

ent molecular weight of 170,000 and has a dissociation

constant for BSP around 4 �tM.

An organic anion binding protein has also been iso-

lated from rat liver plasma membrane by affinity chro-

matography on bilirubin and BSP-agarose (964). It has

a molecular weight of approximately 60,000. More recent
work indicates that three classes of binding sites are

needed to account for the observed BSP binding with

capacities of 3.5 x 10”, 1.6 x i0�, and 5.4 x 10� mol/
mg of protein (966). BSP-glutathione binding sites had

maximal capacities of 5 x 10” and 2 x 10� mol/mg of

protein. BSP-glutathione, indocyanine green, and bili-

rubin, but not taurocholate, compete with BSP for bind-
ing. Demonstration of a saturable binding site with

greater affinity for BSP than albumin or ligandin sug-

gests a membrane-bound transport system is responsible

for hepatic uptake and biliary excretion of organic an-

ions.

Further studies (1280) indicate isolation of a 5500

dalton protein which has high affinity (Ka 0.27 �M�)

and saturable binding (6.3 nmol/mg of protein) for BSP.
This protein is immunologically distinct from ligandin

and rat albumin and binds biirubin (K� = 20 SM).

Thus, three groups have isolated proteins from plasma

membranes of liver that bind BSP. Whether the marked

differences in molecular weights may be due to differ-

ences in polymer formation or to distinct proteins is not

known. Also, it is not known whether these BSP binding

proteins are the transmembrane carrier(s). While one or

all of these proteins may be the putative receptor for

organic anions, further studies in animal models with

reduced hepatic uptake of organic anions (mutant South-
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down sheep and fetal or neonatal animals) may elucidate

the relationship of this receptor to hepatic transport.

c. DESIALYLATED GLYCOPROTEINS. Rapid removal of

circulating desialylated glycoproteins from blood of
mammals occurs exclusively by liver and is mediated by

a carbohydrate recognition system present only on hep-

atocytes (845, 1047). This cell surface receptor recog-

nizes, binds, and internalizes molecules having exposed

residues of galactose, N-acetylgalactosamine, and glu-

cose. After internalization via coated pits and coated
vesicles, desialylated glycoproteins subsequently appear

in a complex network of tubules and uncoated vesicles

before reaching the lysosomes where they are degraded
(279, 513, 1226, 1227). Studies in isolated hepatocytes
indicate only 5% of the receptors (6.7 x 10� receptors/

cell) are present on the external surface of the sinusoidal
membrane and the rest are in the cytoplasm. Ligand

binding to the receptor is time-dependent, saturable, and

dissociable (K� = 3.4 x 10� M) (1124). Furthermore, the

receptor is apparently stable under conditions where the

ligand is being destroyed and hence undergoes recycling

such that most receptor molecules are located intracel-

lularly (1160). In spite of the 50% reduction of receptor

protein by inclusion of cycloheximide in the medium,
metabolism of asialo-orosomucoid was 34 times greater

than the amount that could be bound to the receptor

(1124), which supports the hypothesis of receptor recy-

cling. Molecular weights for the asialoglycoprotein bind-

ing receptor are 104,000 and 109,000 for rat and rabbit,

respectively (1125). Infusion of receptor-specific anti-

body substantially reduces hepatic uptake of asialo-oro-

somucoid but not that of bilirubin, thereby suggesting
that the receptor is essential for clearance of desialylated

glycoproteins (1139).
Approximately 70% to 80% of an intravenously ad-

ministered dose of mannosaminated ribonuclease A di-
mer and serum albumin is taken up by the endothelial

and Kupffer cells ofthe liver (1270). Since hepatic uptake

of non-glycosaminated derivatives was <5%, these pro-

teins are thought to enter hepatocytes via the desialy-

lated glycoprotein receptor-mediated carrier.

d. LIPOPROTEINS. Hepatic uptake ofE apoprotein from

high density lipoproteins by rat liver is a receptor-medi-

ated saturable process with high affinity for the lipopro-

tein (1083). Results suggest that the mechanism of up-
take is identical for that of chylomicron remnants, and

that E apoprotein is the receptor recognition site for
chylomicron uptake into liver (164, 165, 173). However,
non-parenchymal as well as parenchymal cells are in-

volved in the uptake of cholesterol ester-labeled serum

lipoproteins (1199). These data indicate the importance

of non-phagocytosing parenchymal cells in the clearance

of endogenous compounds.

e. ENDOTOXINS. Receptors for the lipopolysaccharide
endotoxin have been detected on the plasma membranes

of isolated rabbit hepatocytes (953). Binding to the mem-

brane increases directly with endotoxin concentration

between 0.01 to LO mg/ml. Results demonstrate that
parenchymal cells are also involved in hepatic clearance

of endotoxin.
f_ IMMUNOGLOBULINS AND IMMUNE COMPLEXES. In-

travenously administered immunological aggregates are
taken up by and sequestered in hepatocytes of rabbits

and rhesus monkeys (772). Receptors for the Fc portion

of immunoglobulin G (IgG) and the third complement
component (C3) have been localized on the hepatocyte

plasma membrane (368, 505). Small amounts of immune
complexes are taken up by non-parenchymal cells (506).

The mechanism for the in vivo uptake of foreign corn-
pounds such as human IgG by mouse hepatocytes is

thought to involve binding to a receptor followed by
macropinocytosis (44). Extensive work has characterized

the clearance of IgA and IgA antibodies from blood by
the liver and subsequent active transport into bile (107,

547, 562, 671, 725, 884). The uptake process appears to
be initiated by binding to a receptor, secretory compo-

nent, which is found on the sinusoidal surface of hepa-
tocytes (347, 883). Receptor-mediated endocytosis is gen-

erally associated with coated pits and coated vesicles

(318). However, elucidation of the structure of the recep-

tor and the mechanism initiating the formation of vesi-
des are needed before a complete understanding of the
uptake of immunological complexes can be achieved.

g. INSULIN. The initial interaction of ‘25I-insulin with

binding sites on the hepatocyte plasmalemma was dern-
onstrated by electron microscope radioautography (89).

Results showed that binding distributed evenly over the

sinusoidal and lateral surfaces of the hepatocyte and was
notably absent from the canalicular membrane (90).

Interaction of hormone with receptor activates pinocy-
tosis and the formed vesicle is transported through the

cytoplasm to the Golgi apparatus. Biochemical evidence

from studies with isolated hepatocytes indicates that

both receptor and insulin are internalized (1172). Light

and electron microscopic observations suggest that the
pinocytotic process is probably activated by high concen-

trations of hormone as grains visually appeared close to

one pole ofthe membrane ofthe macropinocytotic vesicle

(89, 90). Photoaffinity-labeling and receptor-specific
antibodies have been used to characterize this receptor

(548, 1290); however, its biological importance is not
completely determined.

h. OTHER CHEMICALS. Additional receptors are in-
volved in uptake of fatty acids (976), hemoglobin-hap-

toglobin (607), transcobalamin (848), and several hor-
mones such as growth hormone (360), prolactin (121),

estradiol (922), etc. A recent review discusses properties

of these receptors, transmernbrane movement of endog-

enous and exogenous compounds, and liver plasma mem-

brane biogenesis (318).

2. Intracellular Proteins, a. LIGANDIN. In 1969, two

proteins designated Y and Z were identified in rat liver
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cytosol on the basis of their ability to bind organic anions
(348, 728, 981). Y protein, quantitatively the more im-

portant protein, has been purified to homogeneity and

found to bind various drugs, hormones, and metabolites

(540). This protein was termed ligandin and proposed to

be an important determinant of organic anion transfer

from blood to liver. This hypothesis was based on the
following indirect data. 1) A deficiency of ligandin in

liver of newborn guinea pigs (728) and monkeys (729)

was suggested to account for the observed neonatal un-
conjugated hyperbilirubinemia. Normalization of hepatic

organic anion transport coincided with growth and the
appearance of ligandin. 2) A phylogenetic study demon-
strated that the elasmobranch bony fish and the gill-

breathing mudpuppy have no detectable levels of ligan-

din, have ony trace amounts of Z protein, and lack
selective BSP uptake. All tested lung-breathing amphib-

ians, reptiles, birds, and mammals have appreciable
levels of Y and Z proteins and hepatic organic anion

uptake (731). In addition, there is an apparent correla-
tion between hepatic BSP uptake and content of soluble
binding proteins. Furthermore, ligandin, which is unde-

tectable in gill-breathing tadpoles, becomes detectable
after metamorphosis to lung-breathing adult frogs (731).
3) The concentration of ligandin in rat liver increases

after administration of phenobarbital, trans-stilbene ox-
ide, or butylated hydroxyanisole and is associated with a

concurrent enhancement of anion uptake (348, 429, 981).

Pregnenolone-16a-carbonitrile induces ligandin and
doubles BSP and bilirubin binding (758). However, con-

flicting data indicate binding to ligandin is not the sole

determinant of hepatic organic ion uptake. 1) Mutant
Southdown sheep have impaired hepatic uptake of BSP,
bilirubin, rose bengal, and indocyanine green yet have
normal concentrations of the binding proteins of liver

(217). 2) Novobiocin and probenecid interfere with the
hepatic uptake mechanism but do not compete with

bilirubin and BSP for the binding proteins (728). 3) Little

correlation exists between the ability of microsomal en-
zyme inducers to enhance ligandin levels and the biliary

excretion of chemicals (638). 4) Evans blue dye binds

appreciably to ligandin in vitro but is not readily taken
up by the hepatocytes (728). 5) Although ligandin is

barely detectable in the liver of newborn guinea pigs,

uptake of BSP on their second day of life is comparable
to that observed in adults (1256). 6) Hepatic uptake is

reduced in hypophysectomized and thyroidectomized
rats although ligandin is increased (981). 7) In vitro,

ligandin has a lower affmity for BSP and bilirubin than
does albumin, yet these compounds are readily removed

from albumin during hepatic uptake (364, 583, 1281).

More recent experiments demonstrate a decrease in

bilirubin or DBSP efflux from liver after both phenobar-
bital-, nafenopin-, or thyroidectomy-induced increases in
hepatic ligandin concentration (794, 1281, 1282). The

role of ligandin in the transport of organic anions from

blood to bile is mainly limited to performing an intracel-
lular binding function (586, 1279). Although no evidence

suggests these proteins are responsible for recognition
and uptake of organic anions from vascular space, bind-

ing to these proteins can reduce anion efflux into plasma.

However, an additional function of ligandin was dis-

covered in 1973 when the BSP that bound to ligandin

during gel filtration became conjugated to glutathione
(GSH) (589). Subsequently, ligandin was demonstrated

to be identical to GSH S-transferase B, one of six distinct

GSH transferases in rat liver cytosol (450, 451). Recently
it has been demonstrated that BSP binding to ligandin
was not affected by the presence of bilirubin or indocy-

anine green; however, conjugation of BSP was signifi-

cantly reduced by the latter anion (230). Results suggest
the presence of catalytic and non-catalytic binding sites

on ligandin. In fact, many organic anions including in-

docyanine green and bilirubin bind non-covalently to
GSH transferases but are not conjugated (103, 584, 585,

601, 739, 1093).

Butylated hydroxyanisole and trans-stilbene oxide in-

duce GSH 5-transferase, increase hepatic ligandin con-
tent, and enhance the biliary excretion of BSP (429).
These treatments did not enhance the biiary excretion

of DBSP, a phthalein dye that binds to ligandin but is

not conjugated with GSH. Thus, ligandin is more impor-

tant as an enzyme than as a binding protein for the

excretion of phthalein dyes. Also, the hepatic accumula-
tion of biliary contrast agents does not correlate with

binding to cytosolic proteins (738).

b. METALLOTHIONEIN (MT). MT is a small protein of
6600 daltons that contains approximately 30% cysteine

and no cystine residues. MT does not contain any aro-
matic amino acids or histidine and hence does not absorb

ultraviolet light at 280 nm. Absorption at 250 nm does

occur and depends on the metal-mercaptide bond. If the
metal-free protein, thionein, is prepared by dialyzing MT

at a low pH or against ethylenediaminetetraacetic acid

(EDTA), this 250 nm absorption disappears (131, 147,

512, 573, 676, 678, 774).

The ability of MT to bind metals is due to the abun-
dance of cysteinyl-free sulfhydryl groups. A stoichiomet-

nc relationship of three mercapto residues per metal ion
exists. In normal animals, the major metal bound to

hepatic MT is zinc (573, 574). Although numerous metals
bind MT, their actual binding affinities have not yet

been determined.
Concentration of MT in tissues can be increased by

administration of metals such as zinc (288, 1117, 1242,

1271) and cadmium (288, 1072, 1242, 1272). In addition,
MT can be induced in rat liver by food restriction (139),

alkylating agents (677), stresses such as heat, cold, stren-

uous exercise, etc. (865), and bacterial infection (1108).
MT concentration in the liver of hamsters was increased
40% to 80% by hydrocortisone and dexamethasone, and

700% and 2000% by zinc and cadmium, respectively
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(655). Data suggest that stress-induced increases in MT
concentration could be mediated by adrenal corticoste-

roids. MT induction by metals is probably not mediated
via these steroid hormones since even very large doses

do not induce MT to the same order of magnitude as
these metals (655).

The physiological function of MT is not known but
probably is important in the homeostasis of essential
trace elements, such as zinc and possibly copper (131,

315, 656, 668, 778, 985, 986). The function most widely
studied is the ability of MT to sequester metals and
reduce their toxicity (605, 855, 1241, 1242) by binding

metals. MT may increase their uptake into liver in a
similar manner to that originally proposed for ligandin

for the uptake of organic anions. Indirect support for
this hypothesis is available from several studies. A large
plasma to liver concentration ratio of about 30 for lead

(665) may be due to its binding to MT. The major

concentration gradient for copper is also from plasma to
liver and appears to be bound intracellularly to a large

nondialyzable or nondiffusable protein (628, 1169). The
dominant concentration gradient for mercury and meth-
ylmercury is also from plasma to liver (639). Since these
metals both bind to cytoplasmic MT and concentrate in
liver, MT could facilitate hepatic uptake by sequestering

the free metal upon entering the liver. However, pretreat-

ment of rats with cadmium to induce MT does not
enhance the net uptake of cadmium, lead, arsenic, man-

ganese, copper, mercury, or zinc (649). Induction of MT
decreases the biliary excretion of cadmium over 90%,
excretion of copper, mercury, zinc, and silver about 60%,

and that of lead 20% (179, 193, 649). MT has relatively
little effect on the biliary excretion of arsenic, man-
ganese, and methylmercury. These results suggest MT

does not influence the plasma disappearance of metals
but does cause intracellular sequestration and decreases
their excretion into bile.

E. Biliary Excretion

1. Classification of Chemicals Excreted into Bile. Corn-
pounds undergoing biliary excretion may be categorized
into three classes based on their bile to plasma concen-

tration ratios (135, 137). Class A substances have a ratio
of approximately 1.0 and include Na�, K�, Cl, and
glucose. Class B compounds have a bile to plasma ratio
usually between 10 and 1000. Examples are the bile acids,

bilirubin, BSP and other dyes, and numerous xenobiot-
ics. Class C substances have ratios less than 1.0 and

include cholesterol, phospholipids, sucrose, albumin, and

other macromolecules.
Most xenobiotics for which biliary excretion is an

important route of elimination are class B compounds.

Most of the remainder of the review will be concerned
with class B compounds except for the next few para-

graphs where the biliary excretion of class A and C
compounds will be discussed.

Little is known about the mechanism by which corn-

pounds of class A are excreted into bile. The distribution
of cations in bile is similar to that in plasma as Na� ion

dominates. Passage of sodium into bile may result from

a passive response to actively secreted organic anions,

predominantly bile acids, or the formation of the bile
acid-independent fraction by active sodium ion trans-

port. Potassium ion appears to reach bile only by passive
diffusion (752) with two components: a rapid one corn-

patible with the interstitial paracellular shunt and a
slower part which may represent transcellular K� move-
ment (409). Chloride ion concentration in bile is influ-

enced by bile acid secretion (74). Species with high bile
acid secretion rates such as dogs (1253), rabbits (1026),

and man (938) have low biliary chloride concentrations.
Bicarbonate ion excretion is influenced by several gas-

trointestinal hormones and neural stimuli, and a postu-
lated canalicular bicarbonate pump (465) may be partly
responsible for elaboration of the bile acid-independent

fraction of canalicular bile.
Several lipid-insoluble saccharides are excreted in bile

at a concentration similar to or less than that in plasma.

In the rat, the bile to plasma ratios of inulin, sucrose,

and mannitol are 0.1, 0.2, and 1.1, respectively, which

suggests a possible relationship between biliary excretion

and molecular size (1030). Biliary lipids are also present

in bile at concentrations lower than in plasma, but the

origin of these phospholipids and cholesterol is not clear.

The role of microtubules and vesicular transport in the

biliary excretion of lipids is not known with certainty
(1130). However, the canalicular membrane is devoid of

the enzymes required for de novo synthesis of lecithin

(420). Since microtubule inhibitors decrease lipid excre-
tion into bile and since the biosynthetic enzymes are

present in the smooth endoplasmic reticulum, the micro-
tubular network appears responsible for translocation of

the lipids from their site of synthesis to the canalicular

membrane for excretion (419). Whether biliary lipopro-

teins analogous to those present in plasma are involved
in biliary lipid excretion is still controversial (773, 1040).

The origin of cholesterol in bile is unclear. The impor-

tance of phospholipids and bile salts in maintaining
cholesterol solubility is discussed earlier in the section

on cholelithiasis. The rate of excretion of biliary choles-

terol appears independent of the rate of cholesterol syn-
thesis, the level of hepatic cholesterol ester pool, and the

amount of cholesterol absorbed from the diet (1190,

1191). In the rat, biliary cholesterol is derived from three

sources: 70% from plasma cholesterol, 20% newly syn-

thesized, and 10% from an unidentified hepatic micro-

somal subpool (420, 753, 1048).

Another major driving force of phospholipid and cho-

lesterol excretion into bile is bile acid secretion (420).
Interruption of the enterohepatic circulation of bile acids
leads to a substantial decline in lipid secretion in man
(1040), rhesus monkey (260, 262), dogs (1157), and rats

(461), while cholesterol excretion is less affected (1040).
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Studies in healthy human volunteers indicate cholesterol

and phospholipid outputs are linearly coupled to bile acid

secretion before and after endogenous bile acid pool
replacement (1022). The rapidity of the changes in cho-

lesterol and phospholipid secretion suggests that secre-

tory coupling of biliary lipids is altered and not biosyn-

thetic or absorptive mechanisms. Administration of the
choleretic BSP causes a dose-related decrease in choles-

terol and phospholipid secretion but does not affect bile

acid excretion in dogs and humans (1070). It is apparent
that complex physiological and physicochemical rela-

tionships must be understood before a definitive mech-

anistic model can be elucidated.

Other class C compounds whose excretion is poorly
understood include albumin, immunoglobulins, and

other macromolecules. Approximately 80% ofthe protein
appearing in bile is derived from serum proteins and the

remainder are bile-specific proteins (257, 258). In rat and
mouse bile, few extrinsic canalicular enzymes (alkaline

phosphatase, 5’ -nucleotidase, and leucine naphthylami-

dase) can be found in bile under normal conditions (316).
These are increased during bile acid-induced choleresis,

perhaps by detergent action of bile acids (501). Rabbit,
rat, and guinea pig have detectable activities of alkaline

phosphatase, alkaline phosphodiesterase, leucine na-

phthylamidase, and lactate dehydrogenase in bile (207,

394). In addition, the intact trypsin-a2-macroglobulin

complex and some degradation products are excreted into

bile by rats (414).
Transfer of proteins into bile is thought to occur by

bulk movement via micropinocytosis or by selective pas-
sage through a sieving mechanism. Amylase and ribo-

nuclease A in the rabbit (1001) and other 35S-labeled
pancreatic proteins in the guinea pig (998) are also

secreted into bile in significant amounts. Recent studies

(977) demonstrate that horseradish peroxidase 1) re-

mains inside membrane-limited compartments with hep-

atocytes, 2) reaches the pericanalicular cytoplasm via
vesicles 100 nm or larger in diameter, and 3) subsequently

enters the biliary space by exocytosis. Similar kinetic

constants for hepatic uptake and biliary excretion have
been determined for four other glycoproteins (1174).

A significant amount of the plasma-membrane-bound
enzyme, 5’-nucleotidase, is found in bile (824), suggesting

that membrane fragments may break off of the vesicular
membrane or the adjacent canalicular membrane during

exocytosis. However, the relevance of this mechanism to
production of bile or the excretion of xenobiotics is not

known. Insulin is another protein that normally is in bile

in lower concentrations than those found in plasma (50,

477). Insulin uptake occurs by pinocytosis of receptor-

bound hormone followed by intralysosomal degradation

(1171).

A technique combining cytochemistry with quantita-

tive autoradiography (564, 977) has demonstrated that
within 20 minutes of injection into the portal vein, in-

sulin and/or metabolites appear in bile, while horseradish
peroxidase appears later. Rates of decline in appearance

in bile are similar with both proteins. Thus, there seems

to be a rapid-transport pathway that moves substances

from the sinusoidal surface directly into bile and a slower
pathway involving lysosomal complexes. Both proteins

have a vesicular transport mechanism for secretion into
bile.

Recently, vesicular transport has also been demon-

strated for dimeric immunoglobulin A (IgA) and an an-
tigenically distinct glycoprotein called secretory compo-
nent (347, 825-829, 977, 978, 983, 1140). Additional data

suggest that secretory component is the sinusoidal mem-

brane receptor for dimeric IgA (883) (see section VI D

0. Uptake of IgA has also been studied in cultured
hepatocytes of the rat (562). These proteins are encap-
sulated by endocytosis and, hence, the vesicles contain

associated plasma membrane proteins. During fusion
with the canalicular membrane, portions of these vesicles

can break off and deposit secretory component and 5’-
nucleotidase into bile along with vesicular contents (883).
Since the glycoprotein is found free in bile, there may be
more receptors than IgA molecules (347). Immunoglob-

ulin transport from plasma to bile is very rapid (884).

IgA and 1gM are concentrated in bile while IgG, albumin,
and transferrin are not (235). Endogenous IgA appears

to concentrate in bile ducts rather than hepatocytes

(235). At present it is unclear how other proteins such

as albumin enter bile; however, such a mechanism may

be responsible for the appearance of lysosomal enzymes

in bile (214). In contrast to most proteins, IgA and
haptoglobin are concentrated in bile of rats and rabbits

and have bile to plasma concentration ratios greater than

1.0 (483, 725).

2. Biliary Excretion of Cholephils. Brauer’s class B

compounds have a bile to plasma concentration ratio

greater than 1 and are referred to as cholephils. Biliary

excretion is most likely to be an important route of

excretion for these compounds since they are concen-

trated in bile. However, for compounds that have long

biological half-lives, such as methylmercury, bile can be
an important route of excretion even though it is not
concentrated in bile (640). Class B compounds are

thought to be excreted by active, carrier-mediated trans-

port systems (640, 648, 1029). Classic properties of active
transport are: 1) movement of the chemical against a
concentration or electrochemical gradient; 2) substrate

saturation such that a Tm is exhibited 3) selectivity of

chemical structure; and 4) the system requires expendi-

ture of energy. Although class B substances are consid-
ered to be actively transported, these four criteria are

rarely, if ever, met. Use of inhibitors such as dinitrophe-
no!, ouabain, and hypothermia to decrease biliary excre-

tion of a test compound has not consistently determined
whether a substance is actively transported by the liver.
The third criterion is seldom met, but some specific
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examples will be discussed later. However, competition
between chemicals for bi!iary excretion is usually less

marked compared to active transport systems in kidney

and intestine. The first two criteria are most commonly

involved to define whether a compound is actively trans-

ported (648, 1107).

Transport maxima and high bile to plasma concentra-
tion ratios have been demonstrated for numerous corn-

pounds, but these are often ambiguous. Since many
compounds undergo biotransformation during passage

from plasma to bile, Tm’5 may reflect the rate of metab-

olism and not excretion. Misinterpretation of bile to
plasma ratios can occur if a compound binds to intrace!-

lular proteins such as ligandin, intrabiliary proteins, or

is sequestered within micelles. It is difficult to determine
with certainty that any chemical is actively transported

into bile. The strongest evidence available, however, is
presence of a higher concentration in bile than in plasma

(1029).
Biliary excretion of endogenous and exogenous com-

pounds requires transport into and out of the liver. A
bile-to-plasma concentration ratio greater than 1.0 could

result from several possible transfer mechanisms. A corn-

pound may penetrate the sinusoidal membrane by pas-

sive diffusion and enter bile by an active process; the

substance could be transported actively into the hepa-

tocyte and simply diffuse across the canalicular mem-

brane; or the chemical could undergo active transport

across both the sinusoidal and canalicular membranes.
It should be noted that techniques are available for

selective investigation of hepatic uptake (into intact

liver, isolated perfused liver, isolated hepatocytes, iso-
lated plasma membrane vesicles) but not the excretory

transport step. When measuring the biliary excretion of

a compound, the overall production of hepatobiliary

transport (uptake plus canalicular transport) is quanti-

fled. With our present state of knowledge, compounds

can be classified into groups according to their overall
hepatobiliary transport characteristics without knowing

the cellular mechanism of transfer at each site. In spite
of these limitations, it is thought that at least five trans-

port systems are involved in excretion of chemicals by
the liver. There are transport mechanisms for: 1) organic

anions such as BSP, indocyanine green, bilirubin, and
glucuronide conjugates; 2) bile acids; 3) organic cations

with procainamide ethobromide (PAEB) as the proto-

type; 4) neutral organic compounds such as ouabain; and
5) metals (32, 644, 648, 970).

a. ORGANIC ANIONS. Most compounds are conjugated

before excretion into bile; the most common pathways
are conjugation with glutathione and glucuronic acid,

Many compounds are excreted into bile at a higher rate
after conjugation presumably because it increases molec-

ular weight and polarity and decreases the toxicity of
most chemicals.

i. Conjugated with glutathione (GSH). Chemicals are

conjugated with the tripeptide GSH by a family of en-

zymes referred to as GSH 5-transferases (549). These

GSH derivatives are subsequently cleaved enzymatically

to cysteine derivatives that may be acetylated to form
the mercapturic acid.

GSH and oxidized glutathione (GSSG) are also found
in bile. The concentration of GSH is lower in bile than
liver, and GSSG is higher in bile than liver. However,

the concentration of GSH is much higher than GSSG in
bile. Elimination of GSH and GSSG may be important

in regulating hepatic levels of GSH, but the mechanism

for its secretion into bile is not known (23, 24, 141, 289,
587, 588).

Sulfobromophtalein (BSP). BSP has been used widely

as a measure of hepatic function and is excreted into bile

predominantly as the GSH adduct (209). Conjugation

with GSH facilitates BSP excretion into bile by produc-

ing BSP-GSH which has a higher excretion rate than
BSP (71, 340, 423, 1255) and by eliminating the parent

compound which is an inhibitor of BSP-GSH excretion
(424). However, the rates of excretion of BSP and its

metabolites into bile are much slower than their uptake

into liver. This accumulation of BSP in liver, referred to

as storage (1249, 1252), results from a difference in the

rate of uptake into the liver and excretion into bile, not

the amount of ligandin (153). However, there is also an

appreciable amount of extrahepatic distribution (642).

The importance of GSH conjugation on biliary excretion

of BSP has been demonstrated by its decreased secretion
into bile when GSH levels have been decreased by feeding

a protein-free diet (208), by administration of iodome-

thane (946), or by diethyl maleate (1204) and by inhibit-
ing GSH S-transferase by benziodarone (945) or various

organic analogs of mercury, tin, and lead (152).

Recent evidence further emphasizes the importance of
GSH conjugation in the biliary excretion of BSP (429).

Butylated hydroxyanisole and trans-stilbene oxide in-

duce GSH S-transferase, increase hepatic liganclin con-

tent, and enhance the biliary excretion of BSP. However,
these inducers do not increase the biliary excretion of
BSP-GSH. Similar conclusions result from studies in

vitamin A-deficient rats (1087).

The Tm for biliary excretion of BSP and its conjugates

is around 1.3 mg/mm/kg in rats (479, 660, 1255), 1.3 mg/

mm/kg in rabbits (660), 0.14 mg/mm/kg in dogs (71,

660, 878), and 9.5 ismol/min in man (1252) when BSP is

administered. Since BSP produces cholestasis at high

doses, it is difficult to measure a true Tm (250). Studies
in isolated hepatocytes indicate that transport of BSP-

GSH into bile is energy dependent and saturable (1056).
Maximal velocity of excretion was 60% of that for uptake

and 20% of the maximal velocity of conjugation which
suggests that excretion may be the rate-limiting step in
BSP elimination into bile.

Others. Ethacrynic acid, a potent and effective di-

uretic, is also excreted into bile after conjugation with
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GSH (178, 658). About 60% is excreted into bile within

4 hours of administration. Pretreatment of rats with

phenobarbital increases and diethyl maleate decreases
the conjugation of ethacrynic acid with GSH, producing

similar changes in its biliary excretion (1229). Diethyl
maleate, a compound that is used experimentally to lower

liver GSH levels, is conjugated with GSH prior to excre-

tion into bile (73).
ii. Conjugated with glucuronic acid. The most common

synthetic reaction produces glucuronic acid derivatives

of various substrates, which can be either foreign or

endogenous compounds such as steroids or bilirubin. The
enzymes carrying out these reactions are UDP-glucuron-

osyltransferases, and the co-substrate is UDP-glucuronic
acid. Accumulating evidence supports the hypothesis

that there are multiple forms of this transferase, which

differ in preferred substrate and inducibility (280, 1233).

Bilirubin. In contrast to BSP, which is excreted pre-
dominantly as the GSH conjugate, bilirubin is excreted
as several metabolites (335, 691) but the most common
are glucuronide conjugates. Excretion of bilirubin into

bile occurs after conjugation with either one (bilirubin

monoglucuronide, BMG) or two (bilirubin diglucuronide,

BDG) molecules of glucuronic acid (210, 399, 1241).
BMG formation is catalyzed by the inducible microsomal

enzyme UDP-glucuronosyltransferase (280, 590). BDG
has been suggested to be produced by a transglucuroni-

dation reaction catalyzed by bilirubin glucuronoside glu-

curonosyltransferase (183, 186, 187), although other data
suggest BDG is formed by the microsomal system (110,

111). Studies on these two enzymes have been reviewed

(185, 590, 1041).

In most species, bilirubin exists in bile mainly as the

mono- and the diglucuronides. Bilirubin excretion into

bile is almost totally dependent upon conjugation as

evidenced by the inability of the Gunn rat, which lacks

bilirubin UDP-glucuronosyltransferase, to conjugate and

excrete bilirubin while having normal Tm for conjugated
bilirubin (42). In addition, the amount of BMG in bile is

higher and BDG lower in conditions associated with

deficient UDP-glucuronosyltransferase activity, e.g. Cri-
gler-Najjar disease, Gilbert’s syndrome, and heterozy-

gous Gunn rats (111, 335, 397, 403, 1237). The excretory

transport maximum for bilirubin is also species-depend-

ent ranging from 39 �sg/min/kg in man (1194) to 610 in
rats (991, 1243). These large species variations may relate

to differences in hepatic conjugating capacity, such as
the activity of bilirubin UDP-glucuronosyltransferase

(335, 433). Maximal biliary secretion of bilirubin into

bile appears to be very dependent on UDP-glucuronosyl-
transferase activity (1203). Moreover, depletion of UDP-

glucuronic acid in liver by galactosamine or diethyl ether

decreases the conjugation and biliary excretion of bili-

rubin (433).
Bilirubin is not a choleretic. In sheep during a state of

maximal bilirubin excretion, bile flow rate and osmolar-

ity are not changed while biliary sodium ion concentra-

tion increases (77). Since no change in osmolarity or bile

flow occurs with the increased biliary bilirubin concen-

tration, bilirubin may associate with mixed micelles or
form molecular aggregates and mask the osmotic activity

of the biliary bilirubin.

Others. Many, if not most, compounds excreted into
bile are conjugated with glucuronic acid. Examples in-

dude the uricosuric agent probenecid (439), the biliary

contrast agent iopanoate (211-213), the synthetic ste-

roid, diethylstilbestrol (627), the disinfectant hexachlo-

rophene (379, 653), the anticonvulsant valproic acid (252,

253, 1234, 1236), the dyes phenolphthalein (199), and

phenolsulfonphthalein (phenol red) (467), fluorescein
dyes (1240), vitamin D3 (745), and thyroxine (349, 395).

The importance of glucuronidation on the biliary ex-
cretion of a number of compounds is emphasized by the

alteration in biliary excretion that is observed after an
increase or decrease in glucuronidation. Induction of

UDP-glucuronosyltransferase by phenobarbital or 3-
methylcholanthrene has been shown to enhance the bil-

iary excretion of thyroxine (349), iopanoate (211), dieth-

ylstilbestrol (627), hexachlorophene (653), and valproic

acid (1236). However, enhancement of the glucuronida-

tion of morphine does not increase its excretion into bile

(373, 534, 910). Depression of UDP-glucuronic acid con-

centrations by galactosamine or diethyl ether has been

shown to decrease the glucuronidation and biliary excre-

tion of diethylstilbestrol, valproic acid, phenolphthalein,
and iopanoic acid (213, 433, 1236).

iii. Not Biotransformed. Several chemicals are excreted

into bile without prior biotransformation. Some of the

chemicals have been used diagnostically to determine
hepatic excretory function in man similar to that for

BSP. These chemicals have been extremely useful in
dissecting the effect that physiological, pharmacological,

and toxicological factors have on hepatic excretory func-

tion.

Indocyanine Green (ICG). ICG is used clinically to

measure both cardiac output and hepatic function and is

not biotransformed before excretion (181, 521, 1248).

Clearance of ICG from plasma, in contrast to BSP, fits
a one-compartment open model and its half-life is very

dependent on dose (664) in the first 20 minutes after

administration. However, at longer times, ICG elimina-
tion is non-linear (1141). It is difficult to obtain a Tm for

ICG because of its cholestatic properties (507, 508, 664).

Removal of ICG from plasma (3.8 �tmoles/min/kg) is

much faster than its excretion into bile (0.244 �smoles/

mm/kg) in rats (901, 902). Biliary excretion of ICG and
rose bengal depends on bile acid excretion (427).

Rose Bengal. Rose bengal has been used clinically to

measure hepatic function and is not biotransformed be-
fore excretion (343, 559, 690). It exhibits a rapid and

biphasic disappearance from plasma (646). The rates are

similar between 0.01 and 10 mg/kg in the rat but slower
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at 100 mg/kg. Rose bengal concentrates in liver and

appears to be bound to proteins other than ligandin (646).
The transport maximum for rose bengal into bile of rats

is 100 sg/min/kg (646).
Phenol-3,6-Dibromphthalein Disulfonate (DBSP).

DBSP is the dibrominated analog of BSP, is not conju-

gated before excretion (553), and is handled by the liver

in a similar manner to BSP. The disappearance from

plasma, storage in liver, and excretion into bile are

similar for both dyes in rats, rabbits, and dogs (662). In

humans, the plasma disappearance and storage of DBSP
is somewhat greater than for BSP but the Tm for excre-

tion is similar (249).

Others. Several other dyes are excreted into bile with-

out being biotransformed. Amaranth (red dye no. 2) (531,

1012, 1018), eosine (1040), bromcresol green (200), chlo-

rothiazide (466), succinylsulfathiazole (809), and tartra-

zine (100) are pertinent examples. However, more recent

evidence indicates amaranth does undergo biotransfor-

mation (1012). Further work is needed to ascertain

whether any other of these “non-metabolized” chernicals

are biotransformed as well.

b. BILE ACIDS. Originally, a common carrier system
was postulated for the biliary excretion of all organic

acids. Then, Alpert et a!. (32) demonstrated that mutant

Corriedale sheep were unable to excrete BSP, iopanoic

acid, phylloerythrin, conjugated bilirubin, etc. but elim-

mated bile acids normally via the bile. Although incap-

able of excreting BSP-GSH, Corridale sheep secrete un-

conjugated BSP at a lower rate than normal ewes (76).
Further support for independent carriers was obtained

by the observations that phenobarbital pretreatment en-
hances the biliary excretion of BSP and DBSP but not

taurocholate (620, 663, 900), that indocyanine green has
no effect on taurocholate uptake into the isolated per-

fused rat liver (902), and that nafenopin decreases the

biliary excretion of organic acids but not bile acids (790,

791).

Within the hepatocyte, bile acids are largely bound to

cytosolic proteins and subcellular organelles with 1% to

10% free in the cytosol (1145, 1146). The rate-limiting

step in the excretion of bile acids (393, 398, 970) is their
transport across the canalicular membrane which ap-

pears to be a saturable process and is characterized by a

Tm under steady-state conditions (obtained by stepwise

increased infusions of bile acids). Reported Tm values for

taurocholate are 14.2 �smol/min/kg in sheep (473), 8.5
smol/min/kg in dogs (874), and 13 �smol/min/kg in rats

(14, 398, 904). Biliary transport is more efficient for

conjugated bile acids than unconjugated analogs, and for

trihydroxy bile acids than that of dihydroxy bile acids

(971).

However, maximal bile acid secretion for individual

bile acids also depends on the toxicity of each acid,

Recent data obtained in rats indicate the maximal secre-

tion rate decreases as the toxicity of the bile acid in-

creases (462). Maximal excretion of nontoxic taurourso-
chenodeoxycholate was about 55 �tmol/min/kg or 2.5
times higher than that of taurocholate. Similar results

have been observed by others (264, 611).

Bile acid transport depends on maintenance of normal

membrane structure in that a decrease in fluidity can

reduce the transport maximum. Both periportal and
centrilobular hepatocytes can transport bile acids and

other organic anions (441, 1120); however, the capacity
of the centrilobular cells is higher than the periportal

cells (1120). Adaptation to selective biliary obstruction

and intraduodenal infusion of taurocholate (14) or its

repeated oral administration (1092, 1235) is manifested

as an increase in taurocholate excretory transport. This
is accompanied by stimulated synthesis of bile acid
plasma membrane binding protein which can be blocked

indirectly by cycloheximide (398) and directly by binding

studies (1092). The transport processes for bile acid

uptake and secretion are efficient and rapid allowing an
effective enterohepatic circulation of bile acids while
protecting the peripheral circulation from high bile acid

concentrations and removing the need for a major storage

protein.

c. ORGANIC CATIONS. Evidence for an active excretory

system at the canalicular membrane for organic bases is
the reported bile/liver ratios of 10 or more for total PAEB
in the rat (518, 792, 835, 1031). Further studies indicate

that several organic bases which are excreted into bile

inhibit PAEB secretion. Taurocholate, but not dehydro-

cholate, enhances PAEB elimination into bile, but PAEB

does not affect taurocholate excretion (694, 1031). These

effects are not due to binding to micelles (1213) or
choleresis (694). Isopropamide iodide decreases the liven

plasma ratio for PAEB and its biliary excretion (835).

Similar results have been observed for acetyl procain-

amide ethobromide (acetyl-PAEB) (837) which has sat-

unable uptake and excretory processes (834). Additional

studies indicate that retrograde intrabiliary infusion of
the fluorescent probe N-[p-(2-benzirnidazolyl)phenyl]

maleimide reduces the biliary concentration of acetyl-

PAEB by 50% (836). These data suggest that binding to
exposed sulfhydryl groups on the carrier protein can
inhibit cation excretion into bile. Comparison of liver/

plasma concentration ratios of PAEB and acetyl-PAEB

after administration of sulfhydryl reagents intraportally
or via intrabiliary infusion indicates that p-chloromer-

cunibenzoate and iodoacetarnide inhibit hepatic uptake
of the cations, N-ethylmaleimide decreases only excre-

tion, and p-chloromercury phenyl sulfonic acid inhibits
both steps. Thus, these authors suggest that exposed

sulfhydryl groups appear to be present on both uptake
and excretory transport systems (833).

The structural requirements for transport by the or-

ganic cation pathway are a basic amino group on one

side of the molecule and one or more nonpolar groups on

the other side making the molecule amphipathic (486,
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640). Several bis-onium compounds including d-tubocu-

ranine and hexafluorenium appear to be actively trans-

ported from plasma to bile (787, 788, 792, 793, 796-798).

In spite of marked physicochemical differences, thiazin-

amium and its sulfoxide analog differ slightly in hepatic
uptake and biliary excretion (842). A similar mechanism
has been determined for the tertiary amine chloroguan-
ide-tniazine in vivo (839). However, transport of bisquar-

ternary compounds is decreased by K-strophanthoside

while that of PAEB is not (792). This effect is due to

depression of uptake by interfering with binding of the

bisquaternary compounds to intracellular organelles

(788, 793, 798).

d. NEUTRAL ORGANIC CHEMICALS. Two classes of

chemicals eliminated via this system are monosaccha-
rides and neutral steroids. Under normal physiological

conditions few mono- or oligosacchanides enter bile. Glu-

cose appears in human bile only when the plasma glucose
concentration exceeds 350 mg/dl (970). In the rat, glu-
cose is reabsorbed from bile into liver and little is found

in bile until the plasma glucose concentration exceeds

280 mg/dl. This can be blocked by phlonizin, a specific

inhibitor of glucose transport (447). Glucose reabsorp-

tion from the biliary tree has also been demonstrated by

using the retrograde intrabiliary injection technique

(872). However, localization of this specific transport
system which prevents loss of glucose via the bile remains

to be established. No sugar is known to be concentrated

in bile.
The second class of neutral compounds include the

endogenous steroid hormones and cardiac glycosides.

The prototype of this class is ouabain. This cardiac

glycoside is not biotransformed (219, 696) before its

excretion. Ouabain also does not appear to be bound to

components of liver homogenates (696) or ligandin in
particular (638). The bile/liver concentration ratio 20
minutes after administration is 70 which suggests oua-

bain may be excreted by an active mechanism (1016).
Although ouabain is tightly bound to micelles, taurocho-
late administration does not affect its biliary excretion

and cannot account for the concentrative accumulation

of ouabain in bile (1216).
Biliary excretion of endogenous estrogens varies from

20% to 60% depending upon the species (15). Although

the mechanism for steroid excretion in humans is not
clear, these hormones are conjugated with glucuronic
acid, sulfate, or glucosiduronate (698, 1168) and thus

might be excreted by the organic anion transport system.
However, in rats steroids appear to be excreted by the
same pathway as ouabain (412, 696). Digoxin and digi-

toxin may be excreted by the ouabain pathway; however,
since they are glucuronidated before excretion they are

probably secreted by the organic acid pathway.

e. METALS. Excretion of heavy metals into bile has

been studied systematically only in the past decade and

has been reviewed (644). Although many metals are

retained in the body for a longer time than most organic

compounds, some metals including lead, manganese,

mercury, copper, zinc, and cadmium are excreted into

bile to a greater extent than into urine.
i. Copper. More work has been conducted on the he-

patic disposition of copper than with the other metals

because of attempts to characterize abnormal metabo-
lism in patients with Wilson’s disease (hepatolenticular

degeneration) (1019, 1136). The main route for excretion

of copper is via the feces. Rats excrete 20% of an intra-
venous dose of copper in the feces within 24 hours and

only 6% in urine (888). When administered to humans,
40% is found in the stool within 2 weeks and less than

1% in urine (396, 882).

When administered to an animal, copper is rapidly

taken up into the liver by a mechanism that does not
appear to be saturable (405). Copper can then be excreted

into bile (191, 888), stored in liver (890), or integrated

into ceruloplasmin and secreted into plasma (890, 891).

The excretion of copper into bile has been shown to
increase with increasing dose in the rat up to 1 mg/kg

but not at 3 mg/kg (628). This suggests that a transport

maximum for copper has been reached, although excre-

tion may be limited by copper toxicity since 3 mg/kg is

near the lethal dose in this species. Copper is excreted

into bile against a concentration gradient with a bile/

plasma ratio of 20. The major concentration gradient for

copper is from plasma to liver while the liver to bile

gradient is quite small (628).The copper excreted into

bile of rats is associated with two different molecular
weight substances (194). In humans, binding to a 5000

dalton protein is thought to reduce its enterohepatic

circulation (369).

ii. Lead. Lead is removed from the body at a slow rate.

When lead was administered intravenously to sheep, only

5% to 8% of the dose was excreted over a 5-day period;
83% of the eliminated metal was found in feces and 17%

in urine (112). When lead was similarly administered to

rats and excreta collected for 14 days, 50% of the dose
was excreted, of which 70% was found in feces and 30%

in urine (167). The rate of excretion of lead into feces is

highest during the first day after administration and

decreases rapidly thereafter (167, 665); over 20% is ex-

creted into the feces within the first 24-hours, 9% within

the second 24-hour period, with a rapid decline to mini-
ma! amounts thereafter (665). Most of the lead excreted
into feces is via bile (112, 190). In humans, urine appears
to be a more important route of elimination (596).

An apparent transport maximum for excretion of lead
into bile (1.2 sg/min/kg) suggests that lead may be

actively transported (665). The bile/plasma concentra-

tion gradient of 100 for lead is largely due to the gradient
from plasma to liver, which is 30, and partially due to

the gradient from liver to bile. However, the large bile/

plasma concentration gradient could be due to binding

of lead to cellular or biliary components, since lead is

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


32 KLAASSEN AND WATKINS

bound to proteins of varying molecular weights in bile
(195). Liver proteins have the highest, plasma interme-

diate, and bile the lowest affinity for lead. This suggests

that lead does not passively move from plasma to bile
because of a higher affinity for bile than for plasma but
rather that excretion most likely is carrier mediated

(665).

iii. Manganese. In contrast to most other metals, man-

aganese is rapidly excreted from the body via the gas-

trointestinal tract with only trace amounts in the urine.

Greenberg and colleagues (415, 416) found that 90% of a

1-mg dose injected intrapenitoneally into rats was in the
feces within 3 days. When mangnese was administered
intravenously to rats, over 50% of the dose was in feces

within the first 24 hours and 17% within the second 24-

hour period (634). About 40% of the manganese is re-

moved by a single pass through the liver which is a very

significant first-pass effect (1175). Additional work in-

dicates the biliary excretion of manganese depends partly
on lysosomal uptake and release (1154).

There is an overall bile/plasma concentration ratio

greater than 150 for manganese. Approximately two

thirds of this overall gradient is due to the gradient from
plasma to liver, and about one third from liver to bile.

The large bile/plasma concentration ratio is difficult to

interpret because much of the manganese is not present

as the free cation in bile (634, 1180). Tichy and Cikrt
(1 180) suggested that manganese may be transferred

passively from plasma to bile and then undergoes a non-

enzymatic complex formation in bile. Later studies in-

dicate the metal is bound to bile pigments (1181). How-

ever, plasma and liver contain ligands with a higher

affinity for manganese than bile (634). Thus it would

appear that manganese is not transferred from plasma

to bile by a passive mechanism, but rather by an active
one. About 35% of excreted manganese undergoes en-

terohepatic circulation (191).
iv. Arsenic. Arsenic is slowly eliminated from the body

as are most metals. When arsenic trichlonide was ad-
minstered intravenously to rats, 13% was excreted the

first day and only an additional 7% in the next 6 days.

Of that excreted in the first day, 60% was eliminated in

urine and 40% in feces (633). The concentration of

arsenic is 600-times higher in bile than plasma. The
gradients from plasma to liver and from liver to bile are

greater than one, the latter usually being the larger ratio.
This high concentration of arsenic in bile is not due to a
higher affinity of arsenic for macromolecules in bile than

in liver because macromolecules in bile have little or no
affinity for arsenic whereas the liver does (633). The high

bile/plasma concentration ratio suggests that arsenic is

excreted into bile by an active transport system, although

no transport maximum has been demonstrated.
v. Mercury. The fecal route appears to be more impor-

tant than the urinary route for excreting inorganic or

organic mercurial compounds in rats. No transport max-

imum for inorganic mercury appears to exist; as the dose
of mercuric chloride is increased there is a proportional
increase in its excretion into the bile (639). Mercury is

the first metal discussed in this review that is not con-
sidered a class B compound. Concentration of mercury
in liver is slightly higher and that in bile is about one-

fourth that in plasma. Mercury is bound to large molec-

ular weight proteins in bile (471) and about 20% under-

goes enterohepatic circulation (191). Recent evidence

indicates mercury is excreted into bile with GSH but as

GSH auto-oxidizes to GSSG, the metal associates with

higher molecular weight proteins (63).

The biliary excretion of methylmercury, like mercuric
chloride, is not dose-dependent (639, 857). Bile/plasma

concentration ratio after methylmercury chloride is
about 10 and is due to the higher concentration of

methylmercury in liver than plasma (639, 857). The
concentration of methylmercury is considerably less in

bile than in liver (639). Most of the mercury in bile is
bound to proteins and amino acids (857) after it is

excreted as methylmercury glutathione (62, 485, 858,
880).

vi. Cadmium. The major route of excretion of cadmium
is fecal (148, 170, 196, 234, 659, 863). Biliary excretion is

apparently more important than urinary excretion for

cadmium intoxication even in long-term exposure to rats

and humans (298). The concentration of cadmium in
liver is 150 to 800 times higher than in plasma (659).

This is most likely due to saturation of cadmium binding
to metallothionein at higher doses. The percent of cad-

mium excreted into bile is related to dose but opposite

to that observed for most chemicals secreted into bile; at
higher doses a higher percentage is excreted into bile

(179, 180, 659). Thus the bile/plasma ratio increases as
the dose increases: the bile/plasma ratio is 2.5 at 0.1 mg/
kg and 130 at 3.0 mg/kg (659). The concentration of

cadmium in bile is actually lower than in liver. Sephadex
gel chromatography studies demonstrate that cadmium
in bile is not bound to large macromolecules (471, 676)

but is excreted as a low molecular weight compound,

perhaps complexed with glutathione (180).

vii. Other MetaLs. The major route of excretion for zinc
is fecal with little being excreted into urine (1082, 1122).

The main pathway is not via bile but appears to be across

the intestinal wall (680, 802, 810, 1201).
The importance of the oxidation state of a metal on

its excretion has been demonstrated for tin (481). While

bile is not the major route for excretion of any form of

tin, it has been shown that divalent tin is excreted into

bile while quadravalent tin is not.
About 70% of silver is excreted into bile and 1 % in

urine within 4 days of administration (652). Its concen-

tration in bile is about 20 times higher than in plasma.
Concentration gradient for silver from plasma to liver is

about equal to that from liver to bile. No transport

maximum is demonstrable.

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 33

Beryllium is also excreted into bile, but urine appears

to be important (192). Cobalt is also preferentially elim-

mated via the urine, but the fraction excreted into bile
increases with dose (198).

viii. Role of Glutathione in Metal Excretion. Methyl-
mercury, copper, silver, and zinc are excreted into bile
via a proposed mechanism where GSH is the carrier

molecule (26-28, 880, 963). High concentrations of GSH
are found in rat bile (1 to 3 mM) and the metal-GSH

stability constants are very high (silver, K=10’5; meth-
ylmercury, K=10�9). Infusion of GSH enhances the
biliary excretion of methylmercury (763). Gel filtration

studies suggest that the silver ion in bile is predominantly
found in a 1:1 complex with GSH and in some polynu-
clear complexes with GSH or biliary proteins. Pretreat-
ment of rats with either diethyl maleate or selenite,

depleters ofGSH (511, 967), inhibits the biliary excretion
of copper (26), silver (27), methylmercury (29, 30), and
zinc (28). Administration of BSP or indocyanine green,

which bind to ligandin, decreases the biliary excretion of

methylmercury while bilirubin has no effect (764). These
data suggest that glutathione conjugation may be impor-
tant in the biliary excretion of some metals.

VII. Factors Influencing Hepatobiliary
Transport

A. Physicochemical Characteristics of Chemicals

Excreted into Bile

1. Polarity and Molecular Size. Two physicochemical

factors, polarity and molecular weight, can influence the
biliary excretion of a compound (1107). Presence of a

strongly polar group or potentially ionizable moiety on a
molecule augments biliary excretion. This polar group
may be part of the parent molecule or acquired by bio-
transformation. Conjugations with glucuronic acid, sul-
fate, glutathione, glycine, and taunine are particularly

significant in adding polar groups. Such moieties allow a
molecule to exist at physiological pH as a water soluble
anion. There is no charged center on the cardiac glyco-

sides and no apparent correlation between polarity of the
glycosides and biliary excretion in rats, dogs, rabbits
(1016), or guinea pigs (777). However, presence of one or
more water-soluble sugar residues can compensate for

the lack of a charged moiety and facilitate excretion.
Many drugs excreted into bile are eliminated in the form
of metabolites. In essence, biotransformation (notably
conjugation) augments the biliary excretion by introduc-
ing a strong polar center into the molecule and by in-
creasing the compound’s molecular weight (1107).

Brauer (135) noted that substances which are highly

concentrated in bile are usually organic carboxylic acids
with molecular weights greater than 300. Sperber (1115)
stated that the compounds efficiently secreted by the

renal tubules have low molecular weights (200 to 400),
whereas chemicals excreted into bile are larger (molecu-

lar weight greater than 400). Studies comparing series of

monocyclic benzene derivatives (8), bi- and triphenyls
(808), and sulfonamides (809) indicate compounds whose

molecular weights exceed a threshold of 325 ± 50 are
excreted in appreciable quantities into bile. Threshold

molecular weights for biliary excretion in the guinea pig,
rabbit, and man are 400, 475, and 500, respectively.

Excretion occurs mainly via the bile for xenobiotics with
molecular weights greater than 850 (487). Above these
thresholds, no relationship exists between the extent of
biliary excretion and molecular weight (488, 489). Com-

parison of the excretion of monoquaternary ammonium

cations in bile by rat, rabbit, and guinea pig indicate that
molecular weight may not be important in organic cation
excretion (516).

2. Plasma Protein Binding. Solutes destined for he-
patic metabolism and/or excretion commonly bind to

albumin in the circulation and hence, have smaller vol-
umes of distribution. Familiar examples include bile
acids, bilirubin, sulfobromophthalein, indocyanine green,

and many drugs. Although important in transporting
chemicals to the liver, albumin does not play an impor-

tant role in hepatic extraction or biliary elimination (400,
794, 1038, 1281, 1282). Most chemicals excreted into bile

are highly bound to plasma proteins. How free solute
becomes available to the cell surface, however, is not

clear. The conventional view is that spontaneous disso-
ciation of the albumin-ligand complex allows the liver to
remove much more solute than is free in the circulation.
For many solutes, however, the affinity for albumin and/
or the hepatic extraction fraction is so high that it is

difficult to believe that spontaneous dissociation is the
only mechanism. For example, less than 1% of serum

bilirubin is free in the peripheral circulation, but its
hepatic extraction is at least an order of magnitude
higher.

Forker and colleagues recently reported that perfused
rat livers remove taurocholate (357) and rose bengal

(358) substantially faster than can be accounted for by
the concentration of free bile acid or rose bengal in the
perfusate. Both studies demonstrate that increasing the

perfusate albumin concentration leads to a reduction in

the extraction fraction that is much less than that pre-
dicted by equilibrium binding measured in vitro. Thus it

appears that liver cells enjoy a special mechanism for

enhancing the dissociation of ligands from albumin and

that the release mechanism has a limited capacity.

B. Biological Factors Influencing Biliary Excretion of

Xenobiotics

1. Species Variation. The amount of an organic chem-
ical or a metal that is excreted in bile varies widely
among species. These differences make it difficult to
extrapolate results obtained in laboratory animals to

predict effects in humans. Species have been classified
into three groups based on the percent of an administered

dose of a xenobiotic that is excreted into bile (7, 8). In
general, the rat, dog, hen, and mouse are good biliary
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excretors; the rabbit, guinea pig, and rhesus monkey are

relatively poor; and cat and sheep are intermediate. Un-
fortunately, the significance of these classifications is
reduced by a large number of exceptions. For example,

rats excrete about 50% of an injected dose of ouabain

into bile in 2 hours whereas only 0.5% is excreted by
dogs in that time (1016). Chromoglycate is excreted as
well by the monkey as the rat (45). Terbutaline is ex-

creted extensively in rats (40% of injected dose) but not

in dogs or man (1% to 2% of dose) (852). Comparison of

the excretion of phenol red and indocyanine green in
four marine species indicates several species variations

(949). Indocyanine green was excreted unchanged by all
four fish whereas phenol red was eliminated into bile as
the glucuronide by dogfish shark and skates and un-
changed by hagfish and flounder. A recent study com-

pared the biliary excretion of eight cholephilic anions by

mice and rats (428). Male Swiss-Webster mice excreted

indocyanine green, rose bengal, DBSP, and eosine at a
rate 120% to 460% higher than male Sprague-Dawley
rats. Secretion of bromcresol green and BSP-GSH con-

jugate were similar in the two species, whereas that of

amaranth was lower in mice. Depression of bile produc-

tion by cholestatic organic anions was stronger, and
stimulation of bile flow by choleretic acids was weaker
in mice than in rats. Differences in biliary bile acid

excretion (mouse, 3.62; rat, 1.42 smol/min/kg), bile flow

rate (mouse, 102; rat, 69 �d/min/kg), and liver weight

(mouse, 57; rat, 38 g/kg) but not hepatic ligandin con-

centration (mouse, 132; rat, 214 nmol BSP/g of liver)

may explain the differences in organic anion excretion
into bile between mice and rats. Until the biliary secre-
tion of cationic and neutral organic compounds is stud-

ied, the mouse can only be tentatively classified as a good
biliary excretor. In general, rats and mice may be consid-

ered to excrete chemicals into bile better than other

species.
There is a paucity of data examining biliary excretion

in humans due to difficulties in obtaining samples. How-

ever, several xenobiotics have been detected in human

bile and have been compiled (657, 999). Commonly used
drugs concentrated or readily excreted in bile include

mepenidine (278), ampicillin (144), several cephalosponin

analogs (143, 959), erythromycin (174), clindamycin
(145), practolol and acibutalol (594), digoxin and digi-

toxin (672, 1025), adniamycin (987), vincnistine (546),
indocyanine green and ioglycamide (86, 488), and the

psychotropic agents diazepam and lithium (765, 1064,

1170). Conjugates of several steroids such as estradiol,

progesterone, corticosterone, and cortisone are also ex-

creted into bile (698, 1107).
There are also species differences in the rate of biliary

transport. BSP is readily excreted by rat, rabbit, dog,

and man but the Tm for BSP is 5 to 10 times higher in
rats and rabbits than in dogs or man (660, 939). This

observation may be due to large variations in bile flow

rate since biliary BSP concentrations are comparable.
Species variation in the biliary excretion of metals (lead,

arsenic, manganese) appears to be due to differences in
movement of metal from hepatocytes into bile and not

from plasma into liver (644). Biliary excretion of cad-
mium by rabbits is about 0.16 and that of dogs 0.003

times the rate in rats (659), whereas silver is excreted

0.1 to 0.01 times the rate in rats for rabbits and dogs,
respectively (652). Rats consistently excrete lead, an-

senic, manganese, and methylmercury to a greater extent
than rabbits and both species had higher rates than dogs

(633, 634, 639, 665). Species differences in biotransfor-

mation may also influence biliary excretion. Ethacrynic
acid is a strong choleretic in rats (178, 658) but only
slightly choleretic (1078) or even cholestatic (311) in
rabbits. Since the increased bile flow is due to the osmotic

activity of the glutathione conjugate in bile (178, 658),

this species difference may be accounted for by a 10-fold
greater rate of glutathione conjugation in the rat (431).

Diethylstilbestrol-monosulfate is taken up by the liver of

the rat, conjugated with glucuronic acid, and excreted
into bile (66, 67). The disulfate conjugate is hydrolyzed

to the monosulfate before glucuronidation and biliary

excretion. In guinea pigs, however, appreciable amounts
of diethylstilbestrol monosulfate are either sulfated, glu-
curonidated, or unchanged before excretion into bile (66,

67). Finally, species differences in hepatic blood flow and
bile flow do not appear to correlate with biliary excretion

of all chemicals (1107). Thus, there are no steadfast
theories as to the mechanism(s) for species variations in

biliary excretion. Obviously, further work is necessary

before we have a complete understanding of species
differences in the complex process involved in biliary

excretion.

2. Sex. Differences in biliary excretion between male
and female rats exist but do not necessarily relate to
documented sex differences in drug metabolism (591,
659). Sex variations in biliary excretion have been noted

in rats for indocyanine green and chlorothiazide (466).

Tartrazine (100) is secreted metabolically unchanged. Its

excretion is more efficient in female rats. However, an-

other study found no difference in the biliary excretion
of ouabain, indocyanine green, amaranth, or DBSP

(667).

A recent study indicates a sex difference in biliary

excretion of 2,4-dinitrotoluene (120). After perfusion
with 20 �M dinitrotoluene, male Fischer 344 rats ex-

creted more 2,4-dinitrobenzyl alcohol glucuronide into

bile (392 nmol) than female rats (172 nmol). Capacity
for metabolism of 2,4-dinitrophenol and for hepatic mac-
romolecular covalent binding were not different between

livers from male and female rats. The major difference

between the sexes in the disposition of 2,4-dinitrophenol

appears to be the greater excretion of the glucuronide

into bile by male rats.

Lactating female rats have a higher basal bile flow (80
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�il/min/kg) than normal female or male rats (50 �sl/min/

kg), and both bile acid-dependent and independent frac-

tions of canalicular bile flow are increased (667). The

lactating rats tend to excrete indocyanine green to a

greater extent than normal rats, but no significant dif-
ferences in biliary excretion of DBSP, ouabain or amar-

anth were observed in male and female rats (667).

3. Age. The effects of aging on drug disposition may
result from progressive physiological changes in metab-

olism, excretion, tissue distribution, and blood flow (609,

610, 1200). The plasma clearance of several drugs that
require hepatic metabolism is depressed in aged animals

and corresponds with decreased activity of hepatic drug
metabolizing systems (659). The terminal disposition
phase of benzodiazepines in plasma is slightly longer in

geriatric patients and depends on volume of distribution

(517, 760, 1069).

Decreased biliary excretion of BSP has been observed

in older rats (609). Kitani et al. (614) noted a marked

difference in the plasma disappearance and biliany excre-
tion of ouabain between young and older rats. They

suggested that differences in bile production may be

important for the age-related effects. A recent study has
examined the pharmacokinetics of ouabain in 2- and 6-

month-old rats (527). Plasma ouabain concentrations
were significantly higher in the older rats due to a reduc-

tion in the apparent volume of distribution and not a

decrease in the biliary excretory rate.

BSP retention in plasma increases significantly in
humans around 40 years of age (609). Similar results

were observed with indocyanine green clearance in

healthy geriatric Japanese men (609). Furthermore, stud-

ies of antipynine and indocyanine green clearance in

geriatric patients indicate impairment depends not only

on the effects of aging on hepatic blood flow and activity

of drug metabolizing enzymes but also on environmental

factors such as smoking (1283).

More extensive work has evaluated the development
of hepatic excretory function. Newborn animals are not

miniature adults, either physiologically or in their re-

sponse to xenobiotics (259, 761, 1085). Possible mecha-

nisms that may account for differences in sensitivity

between mature and immature animals include vania-

tions in absorption, distribution, biotransformation, ex-

cretion, and sensitivity of affected tissues. Biliary excre-
tion is not mature in newborn rats (626), dogs and rabbits

(643), and guinea pigs (1256). Indirect evidence indicates
newborn humans also have a decreased capacity to ex-

crete foreign compounds into bile (1206).

The decreased excretion of ouabain in newborn rats

has been extensively studied and reviewed (650). Results

indicate that neonatal rat liver is unable to extract oua-

bain from plasma which enables ouabain to produce its

toxic effects (625). This relative inability of the liver of
newborns to remove xenobiotics from blood has been

observed for BSP, BSP-GSH, eosine, indocyanine green,

and taurocholate (629, 631, 645, 650, 670). The excretory
capacity approaches adult levels by 1 month of age and

can be stimulated to develop earlier by pretreatment

with microsomal enzyme inducers (637, 645). Decreased
hepatic excretory function does not appear to relate to

the low ligandin levels in the liver of the newborn (638).

Ouabain uptake could not be measured in hepatocytes

isolated from 12-day-old rats, thus suggesting that a low

hepatic uptake capacity is probably the mechanism by
which ouabain exhibits greater toxicity in the newborn

rat (1118). Thus, a decreased uptake process appears to
be responsible for differences in toxicity of ouabain.

Neonatal rats are tolerant to the toxic effects of phal-
loidin (1296). Decreased sensitivity of the 5-day-old rats

is not caused by lack of microfilaments (19). Isolated

hepatocytes from newborns exhibit reduced uptake of

both bile acids and 3H-demethylphalloin (918, 1296).

Since phalloidin is not biotransformed in the liver (950),
tolerance is apparently due to decreased uptake of the
toxin (1295, 1296).

Depressed uptake in neonatal animals has been ob-

served for other xenobiotics. Cumulative hepatic uptake

of bilirubin is low in young guinea pigs and does not
achieve adult capacity until 15 days of age (381). Accu-

mulation of indocyanine green in liver slices from new-
born guinea pigs is lower than that in slices from adults
(522). Moreover, the transport maximum for indocyanine

green is one-third the adult level in neonatal guinea pigs

(523).

Hepatic uptake of taurocholate in fetal sheep is similar

to that in adults. However, adult liver excretes the tracer

dose more rapidly than fetal or neonatal liver which
indicates that hepatic bile acid transport is not corn-

pletely mature (1066). Hepatic transport of eosine is

lower and phenobarbital could not increase its biliary

excretion in 20-day-old rats (338). The ability of neonatal

rats to excrete methylmercury into bile develops between

2 and 4 weeks of age and correlates with the capacity of

the liver to secrete glutathione (62). Excretory transport

may be limited by the available concentration of GSH.

The increased toxicity of colchicine in newborn rats is

largely due to immaturity of hepatic excretory function

(519, 520). About 68% of colchicine is excreted into bile

within 2 hours in rats (520) against a concentration

gradient and the liver/bile gradient is larger. Comparison
of excretion in 10- and 35-day-old rats indicates higher
plasma and liver concentrations and lower biliary excre-
tion rates for colchicine in the immature rats. Results

suggest colchicine is more toxic to newborns because of

the lower capacity of the liver to concentrate colchicine

and excrete it into bile (519).

Excretion of drugs by the liver into bile cannot be

studied directly in newborn rats. However, the morpho-
logical development of the biliary tract in rats has been

described as an indirect estimate of biliary function

(248). From days 16 to 19 of fetal age, the canaliculus is
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forming and is defined by an intracellular invagination

of two adjacent cell membranes into one of the two

neighboring hepatocytes. The canalicular lumen dilates

during the first 3 days postpartum but then regresses to

normal size and fills with microvilli by day 10. However,
hepatic excretory function in the rat remains depressed

at 10 days of age. If adult-like canalicular structure
reflects secretory function, then maturation of excretory

function following day 10 must be due to development of
uptake and/or conjugation.

4. Fasting. Fasting induces a slight increase in serum

bilirubin concentration in normal humans and patients
with hemolytic jaundice (78, 331). A much greater abso-

lute rise in serum bilirubin concentration occurs after

fasting in patients with Gilbert’s syndrome (93, 334) and
appears to result from an acquired depression of hepatic

bilirubin UDP-glucuronosyltransferase activity (331,
332). A similar increase in plasma bilirubin is observed

in ponies under food deprivation (300). Caloric restnic-

tion is responsible for diet-induced hyperbilirubinemia

but not alterations in dietary components of carbohy-
drates, protein, or fat (330). Hepatic clearance of biliru-

bin (300, 608), BSP and indocyanine green (1129), and

bile acids (299) is decreased during fasting.

More recent studies indicate that depressed carbohy-

drate reserves can affect bilirubin conjugation. Fasting

produced a 50% inhibition of UDP-glucose dehydroge-

nase activity resulting in a 43% decrease in hepatic

UDPGA concentration in rats (333). Furthermore, nu-
tnitional states can alter UDPGA levels which affects the

glucuronidation of p-nitrophenol in isolated rat liver
(973, 974). Short-term fasting (48 hours) can also in-

crease the turnover of hepatic GSH and decrease its
concentration in livers from control or acetaminophen-
pretreated rats (716). Acute changes in nutrition can

markedly affect other factors of metabolism such as

xenobiotic transport, oxygen or energy states, NAD or

NADP concentrations as well as the major phase I and

conjugation pathways (1179).

However, the complete mechanism of fasting hyper-

bilirubinernia is not totally understood. For example,
data obtained in fasting subjects with Gilbert’s syndrome

suggest there was no modification in bilirubin clearance
but rather an increased intrahepatic production of bile
pigment (870). These results are at variance with conclu-

sions made by several laboratories (93, 331, 333, 608,
1129). In addition, the plasma disappearance and biliary

excretion of BSP, which is not glucuronidated, are also
decreased after fasting (1129).

Results of a recent study suggest alterations in uptake

account for the diminished clearance of BSP (708). In

fasted rats, two distinct carriers for organic anions ap-

pear to exist: a high affinity, Na�-dependent system and

a low affinity, Na”-independent system. Although total

BSP binding capacity was not changed, fasting decreased

the affinity of the low-affinity component 53% and re-

duced the capacity of the high affinity site 50%. In

addition, a slight depression of hepatic blood flow and/

or an increase in BSP efflux may also affect the plasma

clearance of BSP. The higher rate of efflux probably

results from a fasting-induced decrease in hepatic ligan-

din concentration (1129). Administration of glucocorti-

coids increases the hepatic clearance and uptake of bili-

rubin but does not influence the biliary excretion of the
pigment in patients with Gilbert’s syndrome (866). Ob-

viously, the effects of fasting on biliary excretion are
complex and may affect the uptake and biotransforma-

tion of xenobiotics.

5. Pregnancy. The physiological state of pregnancy

affects biliary excretory function in several ways: BSP

retention is increased while its transport maximum is

depressed; the extraction of bilirubin from plasma is

impaired and the serum activity of alkaline phosphatase

is enhanced (979, 982). Biliary excretion of 12 different

estrogenic chemicals (16), progesterone metabolites

(699), cholic and chenodeoxycholic acids (700), biliary
lipids (980), diphenylhydantoin (1219, 1222), and BSP

(982) is depressed in pregnant animals.

In the hamster, pregnancy decreased bile acid-inde-

pendent flow, hepatic Na�-K�-ATPase activity and

cholic acid excretions and increased the concentration of
biliary lipids without altering the lithogenic index (980).

The decrease in cholic acid excretion accounts for the

diminished secretion of total bile acids and part of the

decrease in bile flow.

When examined in pregnant rats both in vivo and in

the isolated perfused liver, biliary concentration of 5-

phenyl-5-p-hydroxyphenylhydantoin glucuronide, the
primary metabolite of diphenylhydantoin, was decreased

and the liver had apparently lost its ability to concentrate

the metabolite in bile (1222). Similar effects on diphen-
ylhydantoin metabolism and excretion can be observed

in the isolated perfused rat liver and in vivo following

administration of estradiol-17fl (1220), and the synthetic

estrogen, diethylstilbestrol (817).

UDP-glucuronosyltransferase activity toward estrone

and estradiol was decreased by 30% in pregnant rats and

rabbits (1221) but was more susceptible to induction by

3-methylcholanthrene. Other studies have demonstrated

depression of glucuronide conjugation of steroidal and

non-steroidal acceptors (840, 1221). Pregnancy and pre-
treatment with estradiol-17f3 decreased UDP-glucuron-

osyltransferase activities toward morphine and estrone

by 20% and 50%, respectively, and could be induced by

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in pregnant

rats (142). Moreover, estradiol depressed the biliary ex-

cretion of morphine 3-glucuronide but did not affect bile

flow (142). In contrast, pregnancy reduced bile flow

slightly but did not alter the excretion of morphine.
These data indicate the effects of estrogens, as in preg-

nancy, on xenobiotic metabolism and biliary excretion

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


BILE FORMATION, HEPATIC UPTAKE, AND BILIARY EXCRETION 37

vary with the chemical and the dose and duration of

estrogen exposure.

C. Pharmacological Factors Influencing Biliary

Excretion of Xenobiotics

1. Microsomal Enzyme Inducers. Chemicals that in-

crease the synthesis of various metabolizing enzymes

affect the hepatobiliary disposition of xenobiotics. These

agents may produce their actions by influencing one or

more of the following factors: hepatic blood flow rate,

uptake into the hepatocyte, biotransformation and/or
intracellular storage, transport into bile, and bile flow

rate.

Changes in hepatic blood flow can markedly alter

hepatic extraction of chemicals having a high intrinsic
clearance (1164, 1263) (see section VI B). Administration
of microsomal enzyme inducers increases the efficiency

of hepatic extraction (867, 868), and both plasma elimi-

nation and half-life ofdrugs with high extractions depend

on hepatic blood flow rate. Alteration of blood flow by
phenobarbital was suggested to be the mechanism for
the enhanced clearance of indocyanine green (784); in-
creases in blood flow and intrinsic clearance were directly
proportional to the increase in liver mass. However, it
has recently been demonstrated that indocyanine green

does not have high intrinsic clearance in the rat (526)
and earlier that phenobarbital does not enhance the

plasma disappearance and biliary excretion of indocy-

anine green (344, 621).

Microsomal enzyme inducers could affect the uptake

of xenobiotics into hepatocytes. Phenobarbital, 3-
methylcholanthrene, and pregnenolone-16a-carbonitrile
(PCN) affect hepatic uptake of ouabain, PAEB, and

taurocholate differently (286). Phenobarbital and PCN

significantly increase the initial velocity of uptake of
ouabain but do not affect that of PAEB or taurocholate

(286) or DBSP (789). 3-Methylcholanthrene does not

enhance uptake velocities for these three substrates but
does produce a significant increase in their steady-state
intracellular concentrations (286). Results suggest that
3-methylcholanthrene inhibits the excretory processes

for these substrates. PCN enhances ouabain and not
taurocholate uptake, which further indicates independ-
ent transport systems for bile acids and ouabain. The
data suggest that these microsomal enzyme inducers
increase the number of carriers for transport into liver.

Many microsomal enzyme inducens increase liver

weight, and the mechanism first proposed to explain the
increase in bile flow produced by phenobarbital was that

it increased liver weight (992). For several reasons this

does not appear to be correct. First, biliary flow and liver
weight do not increase at the same rate. Biliary flow is
significantly elevated 24 hours after one dose and reaches

a plateau between 2 and 7 days of administration,

whereas liver weight is not significantly elevated after
one dose of phenobarbital and tends to increase through-
out 7 days of treatment (619). Second, they do not

increase to the same extent. While phenobarbital pro-

duces about a 50% increase in bile flow, it only increases

liver weight 15% to 25% (619). Finally, the abilities of

various microsomal enzyme inducers to increase liver

weight and bile flow do not seem to be at all related.

Large increases in liver weight without increases in bile

flow are produced by 3-methylcholanthrene and

benzo(a)pyrene (619, 620).

Extensive studies on the effects of barbiturates on

biliary excretion have been reviewed (159, 640, 648).

Stimulation of bile flow does not correlate with micro-

somal enzyme induction; the increase in bile flow occurs

earlier than the rise in P-450 (158, 184, 339, 341). While

cobaltous chloride, an inducer of heme oxygenase, blocks

the increase in cytochrome P-450 produced by pheno-

barbital, it does not prevent the choleresis. The pheno-
barbital-mediated increase in bile flow is due to an in-

crease in bile salt-independent flow (102, 622), which

may be due to stimulation of Na�-K�-ATPase (935, 968,
1091). However, the role of Na�-K�-ATPase in bile for-
mation is controversial and some authors have not seen

an increase after phenobarbital (595).
Once in the hepatocyte, binding to intracellular corn-

ponents can facilitate accumulation of a chemical in the

liver cell. The importance of two such proteins, ligandin

and metallothionein, was discussed earlier. However,

many xenobiotics that are cleared from blood by the liver

do not bind to these components. For example, ouabain

does not bind to ligandin (638) yet microsomal enzyme

inducers enhance its biliary excretion. Also, the amount

of ligandin in liver is not related to the increased biliary

excretion after microsomal enzyme inducers (638). Stim-

ulation of the enzymatic properties of ligandin (GSH 5-

transferase) by butylated hydroxyanisole and trans-stil-

bene oxide enhances the biliary excretion of BSP pre-

sumably by increasing the rate of conjugation (429). It

appears that the ligandin induced by microsomal enzyme

inducers is more important as an enzyme than as a

binding protein in enhancing the biliary excretion of

drugs.

The importance of biotransformation in biliary excre-

tion is well known (733). Most xenobiotics are made
more water soluble by phase I and phase II metabolic

reactions, and phase II reactions significantly increase

the molecular weight ofthe xenobiotic thereby enhancing
its elimination. For example, 3-methylcholanthrene and

phenobarbital pretreatments stimulate the rate of excre-

tion into bile of metabolites of N-N-dimethyl-4-amino-

azobenzene (DAB). Conversely, mixed-function oxidase

inhibitors, SKF 525A and piperonylbutoxide, and agents

which deplete GSH , diethyl maleate and iodornethane,

decrease biliary excretion. Metabolism appears to be the
rate-limiting step in the elimination of DAB (735) a!-

though conjugation with GSH is also involved; later
studies showed that N-demethylation is the major rate-

determining factor (734). Agents that modify biotrans-
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formation also affect the biliary excretion of 4’-(9-acri-

dinylamino)methanesulfon-m-anisidide (1084), valproic

acid (1236), hexachlorophene (653), and many other
chemicals. Administration of phenobarbital to children

with intrahepatic cholestasis reduces the concentration

of bile acids in serum and increases that of bile acid
glucuronides in bile (1137).

Administration of phenobarbital, clofibrate, spirono-

lactone, or PCN to male and female rats stimulates the
plasma clearance of bilirubin and its biliary excretion

(558, 771, 952, 992, 1110, 1300). PCN enhances rat liver

UDP-glucuronosyltransferase activity toward bilirubin
(1233, 1237). Furthermore, spironolactone induction of

UDP-glucuronosyltransferase increases the conjugation
ofphenolphthalein andp-nitrophenol as well as bilirubin

(807). These examples further demonstrate the impor-

tance of metabolism on the biliary excretion of xeno-

biotics.

Administration of spironolactone to rats also increases
the biliary excretion of several cardiac glycosides (168,
169, 636), indomethacin (647), and various metals (453-

455, 616, 641, 654). Specifically, when injected 15 mm-

utes before mercuric chloride, spironolactone stimulates

the plasma disappearance and biliary secretion of mer-

cury. This effect of spironolactone is too rapid to be

explained by induction of microsomal enzymes. Appar-

ently, the spironolactone metabolite, thioacetic acid,

complexes the metal and causes it to distribute through-

out the body in similar fashion to organic mercurials
with lower plasma and kidney concentrations and higher

levels in blood and other tissues (641). The metal is then

excreted into bile as a low-molecular weight complex
(1182). However, spironolactone does not influence the

excretion of all metals similarly. For example, the con-

centrations of mercury and copper in kidney and plasma

were lower after spironolactone and excretion into bile

was increased three- and sevenfold. Spironolactone does

not alter the distribution or biliary excretion of lead,

manganese or arsenic, increases the kidney concentra-

tion of cadmium and silver, and decreases the biliary
elimination of silver (654).

Microsomal enzyme inducers also stimulate the excre-

tion of several nonmetabolized organic compounds. More

than a decade ago phenobarbital was shown to enhance
the biliary excretion of BSP, DBSP, amaranth, succi-

nylsulfathiazole, chlorothiazide, and ouabain (620, 1045,

1255). More recently it has been demonstrated that

bromcresol green, BSP-GSH (340, 341), eosine, amar-

anth, and iodoxamic acid (344) are also eliminated more

rapidly into the bile of barbiturate-pretreated rats. The

biliary excretion of neostigmine and its two metabolites

is also stimulated in phenobarbital-treated rats (1111).
However, the increase in excretion of the unchanged

drug was greater than that of either 3-hydroxyphenyltri-

methylammonium or 3-oxyglucuronide (1111). The

mechanism for the enhanced excretion is not known but

might be due to an increase in amount of carrier protein

(286) or to a stimulation in bile flow causing a “wash

out” effect (620). Since the inducers do not enhance the

biliary excretion of all compounds such as rose bengal

(766) and indocyanine green (344, 620), there might be

more than one transport system for the excretion of
exogenous organic acids.

The mechanism for the increased biliary excretion of

drugs after administration of microsomal enzyme in-
ducers is complex. For some chemicals the difference in
rate of biotransformation is important, for others bile

flow or hepatic blood flow. The most important factor is

probably the ability or number of transport carriers to

move chemicals into the hepatocyte and into bile. For
many xenobiotics, a combination of these factors is

needed.

2. Chlorotoxicants. As noted earlier, 3-rnethylcholan-

threne is a microsomal enzyme inducer which does not

enhance bile flow, hepatic uptake, or biliary excretion
and in fact tends to decrease hepatic excretory function
(287, 619, 620). In contrast to the barbiturates that

induce a family of isozymes that have an absorption

spectrum maximum at 450 nm (P-450), 3-methylcholan-
threne induces heme proteins with a maximal absorbance

of 448 nm (P-448). The chlorotoxicants 2,3,7,8-tetra-

chlorodibenzo-p-dioxin (TCDD), polychlorinated bi-
phenyls, polybrominated biphenyls, chlorodecone (Ke-

pone), and mirex are similar to 3-methylcholanthrene

and decrease hepatic excretory function.
TCDD pretreatment delays the plasma disappearance

and biliary excretion of ouabain and indocyanine green

(456, 1062, 1063, 1287) but not BSP or DBSP (1287).

The polychlorinated biphenyls are generally regarded as

microsomal enzyme inducers, but they impair the elimi-

nation of digitoxin by apparently decreasing the activity
of the enzymes responsible for cleavage of the digitoxose

residues (1042). Mirex and Kepone reduce the biliary

excretion of imipramine metabolites and phenolphthal-
em glucuronide, but not of BSP, despite an increase in

bile flow (227, 785). Impaired biliary excretion probably
results from decreased transfer of metabolites into bile

(785).

The detrimental effects of the chlorotoxicants might

be due to an effect on ATPases. Both TCDD (915) and
rnirex depress the activities of Na4-K�-ATPase and

Mg��-ATPase (225, 226, 242, 786). The TCDD-induced
depression of ouabain excretion was masked by pretreat-

ing rats with PCN or spironolactone on days 6 to 9 after

TCDD injection (914). Even though ouabain transport

into bile is normal, the activities of the ATPases remain

depressed suggesting that the carrier system for ouabain

is separate and distinct from the two ATPases (915).

Peterson (909) has suggested that TCDD causes retro-

differentiation to the neonatal state of hepatic gene

expression such that TCDD-poisoned and newborn rats

exhibit impaired excretion of ouabain. Pretreatment of
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adult TCDD-intoxicated (914) and control newborn rats

(637) with PCN produces expression of normal adult
levels of ouabain uptake and biliary excretion (456).

3. Bile Acids. Intravenous infusions of bile acids can

increase the biliary excretion of BSP (106, 128, 313, 355,
422, 426, 678, 989), indocyanine green (1211, 1218), bili-

rubin (404, 632), DBSP (1211), and rose bengal (422,

766). However, bile acid administration does not enhance

the biliary excretion of ouabain or K-strophanthoside

(795, 1216), eosine, BSP-GSH (422), ethoxyquin (1094),

acetyl-PAEB, or d-tubocurarine (1213).
Bile acids probably even have a physiological role in

the biliary excretion of bilirubin. For example, it appears
that taurocholate is essential for normal exogenous bili-

rubin excretion in ponies (300). More recent studies

indicate infusions of either chenodeoxycholate or tauro-
cholate (8 to 9 �tmol/min) increase bilirubin excretion

60% to 80% following 5 hours of biliary diversion where
endogenous bile acid excretion equals the amount being
synthesized (301). Infusion of dehydrocholate (10.5

j�mol/min) after biliary diversion increases bile flow 45%

to 60% and excretion of bile acid 35% above the level

due to hepatic synthesis. Bilirubin secretion is not

changed. These results suggest that bilirubin excretion

depends on the micelle-forming capacity of endogenous

bile acids.
Cholestyramine-induced bile acid depletion markedly

decreases the excretion of indocyanine green, BSP, rose

bengal, and bromcresol green (427). Biliary secretion of

these anions is stimulated by simultaneous infusion of
taurocholate (422). The mechanism by which the bile

acids enhance the biliary excretion of xenobiotics is not

clear. Since many organic anions bind to biliary micelles
(1211, 1218), formation of macromolecular aggregates

would decrease the effective canalicular concentration

and back diffusion of these dyes and increase their net

excretion (1035, 1218, 1232). However, no differences
were observed in binding of organic anions to micelles

(1211), and non-micelle-forming dehydrocholate also in-

creases excretion of exogenous dyes (94, 1211). Other
studies also suggest that complexation with biliary mi-

celles is not the only factor involved. Excretion of dieth-
ylstilbestrol was increased during taurocholate or tauro-

dehydrocholate infusions (820). Since diethylstilbestrol

monoglucuronide does not form micelles with taurode-

hydrocholate, rnicelle formation alone cannot explain the

evidence for bile-flow-dependent, carrier-mediated

transport of the conjugate into bile. It is possible that

bile acids can facilitate anion transport by allosteric
interactions with canalicular membrane carriers or caus-

ing changes in membrane fluidity. Finally, interference

with storage within the hepatocyte may also influence
excretion (125, 1211).

This phenomenon to increase the biliary excretion of

xenobiotics is not unique for bile acids. Bucolome en-

hances ouabain excretion (613) and the Tm for indocy-

anine green but not for BSP (615). Not all compounds

that increase canalicular bile flow increase biliary excre-

tion of xenobiotics. For example, theophylline (70), SC-
2644 (867), or ethacrynic acid (1210) do not enhance the

biliary excretion of BSP and/or DBSP.
However, bile acids can also depress the elimination

of some exogenous cholephils. For example, the excretion
of amaranth into bile was inhibited by simultaneous
injection of lithocholic, chenodeoxycholic, deoxycholic,

cholic, and dehydrocholic acids (430). The inhibitory

effect of lithocholic acid may be due to toxic actions on
mitochondrial respiration (430) or ATPase function

(796).

4. Hepatotoxicants. Chemicals that are toxic to liver

cells can affect biliary excretion in several ways. Toxi-

cants can affect hepatic blood flow, uptake into the

hepatocyte, biotransformation and storage, excretion,

and biliary tract permeability.

Acute treatment with carbon tetrachloride markedly

decreases the biliary excretion of BSP (661, 947). Fur-

thermore, rats chronically intoxicated with carbon tet-
rachloride have a delayed plasma clearance and biliary

excretion of indocyanine green (530). Intrahepatic me-

tabolism and/or transport into bile of BSP is also im-

paired after styrene- or styrene oxide-induced liver injury

(171, 172).

Biliary excretion of acetaminophen depends on dose

and biotransformation (1088) and is reduced in rats

anesthetized with diethyl ether (560). This may be due
to decreased conjugation with glucuronic acid since di-

ethyl ether depletes hepatic UDP-glucuronic acid con-

centration (303, 1238, 1239). Pretreatment of rats with

galactosamine and borneo!, which also deplete UDPGA
(1239), reduces the biliary elimination of valproic acid

(1236). Excretion of acetaminophen-GSH conjugate may

be reduced after toxic doses of acetaminophen due to

suppression of hepatic GSH synthesis (716). Perfusion
of rat liver with paraquat produces a 70% decrease in

hepatic GSH concentration with a concomitant increase

in oxidized GSH excretion into bile (414). Chemical-
induced loss of microsomal metabolizing systems has

been reviewed (241). Thus, numerous data indicate he-

patotoxicants can markedly alter xenobiotic metabolism.

Several studies have attempted to demonstrate liver

lobule heterogeneity with respect to drug-metabolizing

enzymes (324, 551, 957). However, a comprehensive

study of the effects of seven hepatotoxicants (ally! alco-
ho!, aflatoxin B1, ANIT, bromobenzene, carbon tetra-

chloride, 1,1-dichloroethylene, cadmium chloride) mdi-

cates that poisoning seriously affects the microsomal

oxidases without significantly influencing the activities

of epoxide hydrolase or the glucuronosyl-, acetyl-,
sulfo-, and glutathionyltransferases (432). Although

mono-oxygenases are unevenly distributed in the hepatic
lobule, no reliable information on localization of conju-

gative enzymes was obtained by determination of enzyme
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activity after chemically induced necrosis of a specific
region of the hepatic lobule (432). In vivo metabolism of

ethanol or aminopyrine was not affected by regio-select-
ive damage by bromobenzene or ally! alcohol (1269).

After exposure to bromobenzene or carbon tetrachlo-

ride, centrilobular hepatocytes contributed to the re-

moval of 13% to 18% of a physiological load of taurocho-
late. The 50% decrease in bile flow after bromobenzene

suggests that damage to the centrilobular region produces

alterations in bile production and that 13% to 18% of

physiological bile acids reach bile via centrilobular hep-

atocytes (443). Pentachlorophenol and 2,4,6-trichloro-

phenol inhibit the excretion of BSP into the medium by

isolated liver cells (406). Impaired BSP transport may

be due to depressed energy production since both phenols

uncouple oxidative phosphorylation in hepatocellular

mitochondria. Although acute administration of afla-

toxin B1 decreases bile flow (1193), excretion of BSP in

bile is not seriously diminished (165). In contrast, tau-

rolithocholate-induced reduction in bile flow signifi-

cantly decreases the secretion of adriarnycin into bile,

and the data suggest that the disposition of this chemo-

therapeutic agent depends on the rate of bile production

(1163). A toxic metabolite of ticrynafen reportedly re-

duces bile flow and BSP excretion, but the mechanism

is not known (1299). Administration of an extract of

Amanita phalloides significantly increases the permea-

bility of the biliary tree as evidenced by the reduction in

recoveries of several markers after segmented retrograde

intrabiliary injection (372). Thus, exposure to hepato-

toxic chemicals can affect bile flow, xenobiotic transport,

and biliary tree permeability.

5. Liver Injury. Injury to the liver generally produces

deleterious effects on hepatic excretory function. The

jaundice following liver injury results from decreased

removal of bilirubin from plasma and its excretion into

bile. Dye clearance techniques determine the effect of

disease or chemical-induced liver injury on the plasma

disappearance and biliary excretion of cholephilic dyes

(BSP and indocyanine green). Liver injury of the choles-

tatic type usually decreases bilirubin excretion to a

greater extent than does parenchymal cell injury.

Several studies have evaluated the effect of liver injury

on the toxicity of chemicals normally excreted into bile

(626, 627, 635, 1065). Results show marked differences

in the effect of bile duct ligation on the LD5O of 20

xenobiotics (626). An extensive study of 175 chemicals

indicated that ligation of the common bile duct and
partial hepatectomy increase the adverse effects of 39

and 53 drugs, respectively (1065). The mechanism for

increased toxicity after ligation of the bile duct is unclear

and does not necessarily relate to the percentage of

compound normally excreted into bile. For example, BSP

is excreted almost exclusively via the bile, but its toxicity

is not increased appreciably by ligation. In contrast,

plasma concentrations of ketamine and its N-demethyl-

ated metabolite are increased prolonging ketamine sleep-

ing time (539). If toxicity relates to the peak concentra-

tion in blood, bile duct ligation would probably have no

effect. However, if toxicity relates to persistence of ele-

vated blood levels, then ligation would be expected to

have marked effects. Further work is needed to test this

hypothesis.

Bile duct ligation increases diethylstilbestrol toxicity

130-fold and decreases the plasma disappearance of this

steroid (627). These data indicate biliary excretion is the

primary excretory pathway for diethylstilbestrol. An-

other hypothesis of why ligation increases toxicity of

some drugs to a greater extent than others is that there

could be compensatory shifts to excrete these chemicals

into urine once the biliary pathway has been eliminated.

In fact, increased urinary elimination of bile acid sulfates

in hamsters is observed after decreased excretion by the

biliary route (68). Biliary excretion of melphalan is en-

hanced by ligating the renal arteries (151) indicating the

interrelationship of biliary and renal excretion. Similar

alterations of xenobiotic excretion have been noted after

reduced renal or hepatic function produced by potassium

dichromate and carbon tetrachloride, respectively (231).

Bile duct ligation reduces the plasma clearance of

pentobarbital and meperidine by apparently altering the

initial volume of distribution. A significant reduction in

perfusate flow was observed in isolated perfused liver

experiments with organs from rats with previous bile

duct ligation. Reduced clearance ofboth a high extraction

drug and a lower extraction drug suggest both hepatic

blood flow and drug-metabolizing activity may be altered

by extrahepatic biliary tract obstruction (675).

Two-thirds hepatectomy or selective biliary obstruc-

tion and bile duct ligation affect the plasma disappear-

ance of xenobiotics differently (635). Ligation decreased

the elimination of BSP and indocyanine green to a

greater extent than did partial hepatectomy, while that

of PAEB and ouabain was decreased more after two-

thirds hepatectomy. The data indicate that clearance of

BSP and indocyanine green is more sensitive to inter-

ruption of transfer from liver to bile, while elimination

of PAEB and ouabain is more dependent upon hepatic

mass. Hepatic excretion of hexachlorophene was dimin-

ished by both bile duct ligation and two-thirds hepatec-

tomy and its toxicity was markedly increased (653).

There appears to be a reserve capacity to excrete

foreign compounds. Even though livers from partial

hepatectomized rats weighed 40% to 45% of controls,

biliary excretion of the above four drugs and bile flow

rate were 60% to 65% and 80% to 90% of that of the

controls (635). Further evidence of this reserve capacity

was the observation of a 13-fold increase in serum bile

acids 48 hours after selective biliary obstruction, and
that secretion of water, bile acids, cholesterol, and phos-

pholipids by the nonobstructed lobes was similar to con-
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trols (14). This reserve capacity can be stimulated by

increased substrate concentrations (14, 1092, 1235).

Bile duct ligation 24 hours before administration of a
lethal dose of an extract of Amanita phalloides protects

rats from lethality and prevents a toxin-induced increase

in biliary tree permeability (372). An increase in bile

flow and enlarged biliary tree capacity were observed

after bile duct ligation. The mechanism for protection
against phallotoxins by ligation is unclear but may result

from increases in bile acid concentrations (18) or by

competition with bile acids for binding sites (916) since

phalloidin uptake is inhibited in cells isolated from bile

duct ligated rats (1228).

Studies of the mechanism of postcholestatic choleresis

after biliary obstruction indicate canalicular permeabil-

ity to inulin and Na�-K�-ATPase activity are increased

(10). Canalicular permeability is greater after adminis-

tration of estrogens, phalloidin, taurolithocholate, and

chlorpromazine (268, 352, 1149). These data indicate net
solvent flow across tight junctions and the canalicular

membrane, suggesting canalicular flow does not depend

primarily on the leakiness of these barriers. This in-

creased permeability is not a typical response of drug-

induced cholestasis (928). Moreover, the enhanced Na�-

K�-ATPase activity in livers from 3-day cholestatic rats

correlates with the postobstructive choleresis (10). The

hepatic content of this enzyme increases during cho-

lestasis which suggests an adaptive response of the

ATPase to complete biliary obstruction.
Liver regeneration has been studied following partial

hepatectomy (722). Apparently there is an adaptive reg-

ulation involving derepression by low concentrations of

solutes and also hormonal changes. Specifically, in hep-

atocytes isolated from 70% hepatectomized rats, there

was an increase in both influx and efflux of a-aminoiso-

butyric acid. The amino acid transport system was Na�-

dependent and energized partly by cationic transmem-

brane gradients. The rapid emergence of this high affin-
ity carrier system in the liver remnant following partial

hepatectomy may be important in the regulation of liver

regeneration after injury and the maintenance of xeno-

biotic clearance and excretion.

The effect ofexperimental hepatobiliary injury on drug

metabolism was studied by using two surgical (selective

and complete biliary obstruction) and two drug-induced

(ethinylestradiol and ANIT) models. Mild injury induced

by either selective obstruction or ethinylestradiol admin-

istration did not appreciably affect ‘4C-aminopyrine

elimination by ‘4CO2 breath analysis or the maximal
velocity of demethylation. Severe injury caused by com-

plete obstruction and ANIT decreased ‘4C02 elimination

30% and 60%, respectively, and demethylation by 35%

(1268).

Hepatobiliary function is compromised in several dis-

ease states. The total clearance of numerous drugs is

reduced in patients with cirrhosis (22, 109). Biliary ex-

cretion of d-propranolol is reduced in cirrhotic patients

because of an impaired ability of the liver to extract the

drug from blood (907). Another study indicates that

cirrhotic patients have increased serum concentrations

and urinary elimination of bile acids (1024). Patients
with chronic liver disease have a decreased clearance of

bile acids (299). Excessive accumulation of copper occurs

in livers of patients with primary cirrhosis (1029). Al-

though bile acid excretion is decreased, that of copper

was unaffected; this suggests that elevated copper con-

centrations do not occur as a result of decreased biliary

excretion of the metal. Administration of the chelating

agent, D-penicillamine, reduces the levels of copper and

the excretion of bile acids increases toward normal rates.

The mechanism for this effect is not known. In another

study, patients with porphyria cutanea tarda demon-

strated reduced storage and elimination of BSP. Effects

may be related to derangement of porphyrin metabolism

as coproporphyrin may compete with BSP for binding to

ligandin and for excretion (302). In smokers, systemic

bioavailability of lidocaine is decreased secondarily to an

increased clearance after oral administration presumably

reflecting induction of drug-metabolizing enzymes (515).

In contrast, oral and systemic clearances of lidocaine are

increased in patients with chronic hepatitis B. Admin-

istration of perhexiline maleate induces liver injury in

patients (937) and in rats (494) which can be character-

ized by an impairment of the transport maximum of

BSP. Additional information on the effect ofliver disease

on drug disposition has been reviewed (134, 1086, 1262,

1264). Interrelationship between toxicity of endotoxin

and liver injury has also been discussed (854).

VIII. Enterohepatic Circulation

Numerous chemicals are secreted into bile, deposited

into the intestinal lumen, reabsorbed by the intestine

into the portal blood, and taken up by hepatocytes. This

process is limited topographically to the liver and intes-

tine and is aptly called the enterohepatic circulation (fig.

7). This process enables living organisms to conserve

endogenous substances such as the bile acids, vitamins

D3 and B12, folic acid, pyridoxine, and estrogens. Drugs

also undergo enterohepatic cycling and include cardiac

glycosides, chlorpromazine, indornethacin, antibiotics,

cholephilic dyes, and biliary contrast media. The most

physiologically important of these chemicals is the bile

acids as their transport out of hepatocytes and ileocytes

into bile and portal blood, respectively, is a major driving

force for solute and water movement within the entero-

hepatic circulation. The degree of cycling of other lipo-

philic and hydrophilic xenobiotics depends on bile acid

movement. Additional information on the enterohepatic

circulation may be obtained in numerous reviews (160,

260, 497, 498, 640, 648, 926, 1101, 1107).
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FIG. 7. Enterohepatic circulation.
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A. Bile Acids

In the seventeenth century, Giovanni Borelli calcu-
lated that the total amount of bile entering the intestine

was substantially greater than the quantity present in

the biliary tract. In 1759, the Irish physician, Edward
Barry suggested bile was reabsorbed by the intestines

and returned to the liver. This prescient idea of entero-
hepatic cycling of bile acids was strengthened by discov-

ery of the bile acids in 1809 by Berzelius and their
enterohepatic circulation in 1937 by Sobotka and in 1941
by Josephson (490). Quantification of the enterohepatic

circulation of bile acids in humans by Lindstedt’s isotope
dilution method indicates a 3- to 5-g bile acid pool cycles

6 to 10 times per day (744). Between 20% to 25% of this
pool escapes intestinal reabsorption and is excreted in
the feces (92) but endogenous synthesis from cholesterol
generally equals this loss. However, details of the ho-
meostatic mechanisms controlling synthesis, pool size,

turnover frequency, bacterial metabolism, fecal loss, and
bile acid secretion rates in health and disease are re-
viewed but are poorly understood (160).

The driving forces of the enterohepatic circulation
include bile acid secretion, concentration and storage in
the gallbladder, intestinal absorption, transport in portal
venous blood, and hepatic uptake. Active excretion of

bile acids across the canalicular membrane into bile is
the primary metabolic pump for the enterohepatic cir-

culation. This is the rate-limiting step in the transfer of
bile acids from blood or de novo synthesis into bile (936).

These forces within the biliary tree result in continuous
production of 0.8 to 1.0 1 of bile per day in intact man.
However, flow fluctuates greatly and is reduced at night

and stimulated with feeding.
In species with a gallbladder, bile is concentrated five-

to 10-fold by active absorption of sodium and chloride
ions with passive movement of water (254). In response

to cephalic and hormonal influences during eating, cho-
lecystokinin and motilin, the gallbladder contracts and

extrudes up to 80% of its contents into the duodenum

(319, 1113). Thus, the gallbladder is a storage organ and
a mechanical pump in the enterohepatic circulation.

Bile acids are absorbed passively from all of the gas-

trointestinal tract via ionic and non-ionic diffusion (255).

However, absorption of bile acids by non-ionic diffusion

is about 10-fold greater than that of ionized species.

Hence the relative contribution of each process depends
on intraluminal and membrane pH, the dissociation con-

stant (pKa) of the individual bile acid, the maximal

solubilizing capacity of bile acid micelles for their own
protonated forms, and the partition coefficients of the

ionic and non-ionic species into absorptive membranes
(160). In the upper small intestine with pH 5.5 to 6.5,

about 50% of unconjugated bile acids (pKa 5.0 to 6.5)

will be protonated and non-ionized; a small amount of

glycine-conjugated acids (pKa 3.5 to 5.2) will be proton-
ated; and no taurine derivatives (pKa < 1.8) will be non-

ionized. To be absorbed by passive diffusion, these non-

ionized bile acids must remain in solution.

The ionized bile acids, especially the taurine conju-

gates, depend on active sodium-coupled transport sites

in the lower third of the ileum for absorption (255, 701).

A reciprocal relationship exists between active and pas-
sive transport rates; the most polar bile acids with poor

passive diffusion have the highest maximal transport

rates across the ileum while passively absorbed bile acids

have lower active transport maximums (701). Bile acids
with two or more ionic substituents such as glucuroni-

dated or sulfated derivatives (247) are poorly absorbed

by either active or passive processes (407). Thus, there

are three enterohepatic circuits: one fast, one interme-

diate, and one slow (779), as a high proportion of glycine-
conjugated dihydroxy bile acids are passively absorbed

in the jejunurn (34, 35); taurine and glycine conjugates

of di- and trihydroxy acids are actively absorbed in the
distal ileum (681); and unconjugated bile acids are pas-

sively taken up in the colon (800).
All bile acids are transported back to the liver via the

portal vein and only negligible concentrations are found

in lymph (871). Even though the concentration of cholate

and chenodeoxycholate in hepatic bile is roughly equal,

portal blood is enriched with chenodeoxycholate because

of its more rapid absorption in the upper small intestine

and the more efficient conservation of the less polar bile

acids (21, 294, 497, 498). The bile acids bind avidly to

both serum albumin (294), high density lipoproteins, and

perhaps low density lipoproteins (682). There is little
binding to immunoglobulins or very low density lipopro-

teins (682). Conjugated and unconjugated bile acids bind

to serum albumin at pH 7.4 with the free acid having
higher binding (294).

Hepatic uptake of bile acids is extremely efficient
during a single pass through the liver (497, 498, 779,

943). First-pass clearance in animals and humans is

greater than 90% for cholates and between 75% to 80%
for chenodeoxycholates and deoxycholates. Fractional
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uptake of bile acids is independent of their perfusate

level suggesting the liver’s capacity to extract bile acids

exceeds the transport maximum into bile (936). Hepatic
uptake ofbile acids usually functions with concentrations

well below Vmax. Cholates are rapidly cleared and che-

nodeoxycholates are cleared more slowly, suggesting that

uptake is directly related to the polarity of the bile acid

and may also be inversely related to the strength of

binding to albumin and lipoproteins (497, 498, 528, 529,

682, 779, 1013). Details regarding the mechanism of bile

acid uptake may be found in an earlier section (VI, Cl)

of this review.

B. Other Endogenous Compounds

Several endogenous substances other than bile acids

are secreted into bile and undergo enterohepatic circu-

lation. Bile is the major excretory route for 1,25-dihy-

droxyvitamin D3 and its metabolites (46, 87, 745, 881).
Enterohepatic recycling of 25-hydroxyvitamin D3 has

been demonstrated in man (43) and for 1,25- (693, 745,

1260) and 24,25-dihydroxyvitamin D3 (692) in the rat

and man. Prostacyclin and several metabolites are ex-

creted into bile after p-oxidation and glucuronidation

and seem to undergo enterohepatic circulation (1167).

The coenzyme 5-methyltetrahydrofolate undergoes car-

rier-mediated hepatic uptake, secretion into bile against

a high concentration gradient, and enterohepatic cycling

(1131, 1151). Enterohepatic circulations have been dem-

onstrated for pregnenolone and its 3-sulfate, deoxycor-

ticosterone and corticosterone (304), hydroxycortisone

and its metabolites (1286), norethindrone (1257), an-
drosterone, (781) and estrone (814). All of these corn-

pounds are metabolized and are excreted predominantly
as either glucuronide or sulfate conjugates.

C. Xenobiotics

Although foreign compounds undergo enterohepatic

cycling, few are actively reabsorbed in the intestine.

Compounds secreted into bile in lipid-soluble forms are

reabsorbed by passive diffusion. Generally, these sub-

stances are biotransformed and conjugated before excre-

tion. In this more polar form, these chemicals have

insufficient lipid solubility to undergo passive diffusion.

However, many compounds excreted as polar conjugates
of glucuronic acid or sulfate may be hydrolyzed by bac-

terial fl-glucuronidases or sulfatases present in bacterial

flora (532), and the aglycone may be taken up into the

portal circulation (1107, 1266).

Examples of xenobiotics that undergo enterohepatic

recirculation include estradiol, mestranol and ethinyles-

tradiol (140, 751), norethisterone (48), estrone-sulfate

(49), propachlor (55, 713), aniline mustard (183), diclo-

fenac (1188), fenclofenac (417), morphine (898), phenol-

phthalein (206, 898), diphenylacetic acid (898), 2-aceta-
mido-4-(chloromethyl)thiazole (56), pentachloromethyl-

thiobenzene (54), 3-phenoxybenzoic acid (514), warfarin
(975), 7,12-dimethylbenz(a)anthracene (603), benzo(a)-

pyrene (182), chlordecone (448), numerous insecticides

(776, 783), 3,4,4’ -trichlorocarbanilide (482), oxazepam
(99), lormetazepam (391), spironolactone (9), diethylstil-

bestrol (345, 457), diphenylhydantoin (295, 296), metro-

nidazole (712), l-a-acetylmethadol (996, 997), adriamycin

(1163), and sulindac (270, 271). The enterohepatic cir-

culation of morphine, methadone, etorphine, digitoxin,

diethylstilbestrol, indomethacin, glutethirnide, amphet-

amine, and others have been reviewed (926).

Some heavy metals have been shown to undergo an
enterohepatic circulation (644). For example, 25% of an

intravenous dose of arsenic is excreted into feces within

2 hours, yet less than 10% is in the feces within 1 week

(633). Approximately 35%, 21%, and 17% ofthe divalent

cations of manganese, mercury, and copper, respectively,

are reabsorbed after biliary excretion (191). In addition,

the organic mercurials, phenyl- and methyl-mercury,

have a lower recycling than inorganic mercury (197).
It has been suggested the long pharmacological half-

life of digitoxin in humans results from its enterohepatic

recycling (592, 593, 869). Although interrruption of this

circulation leads to a reduced half-life, factors other than
enterohepatic circulation are important in the slow elim-
ination of digitoxin (1142).

Large species variations exist in the biliary excretion

of many xenobiotics and animal studies do not always

reflect the human situation. The investigation of entero-

hepatic cycling in humans has been limited to only a few

drugs because of difficulties associated with prolonged

interruption of the enterohepatic circulation.

D. Factors Influencing Enterohepatic Cycling

1. Binding Agents. Administration of activated char-

coal or anion-exchange resins can decrease enterohepatic

cycling of xenobiotics and can be clinically useful. Cho-

lestyramine treatment of patients receiving 3H-digitoxin

decreases the serum half-life from 11.5 to 6.6 days (155).

Similar results have been obtained with chlordecone

(129, 204), phenoprocoumon (799), and bile acids (561).

In fact, bile acid depletion by cholestyramine has been
shown to decrease the biliary excretion of numerous

organic anions including BSP, bromcresol green, indo-

cyanine green, rose bengal, and eosine (421). Cholesty-

ramine-induced interruption of enterohepatic cycling

produces a two- and seven-fold increase in the fecal

excretions of phenprocoumon and chiordecone, respec-
tively (129, 204, 799). Activated charcoal has also been
used to trap drugs in the gastrointestinal tract after their

biliary excretion. Although peak blood levels are not

affected significantly, charcoal reduces the serum half-
life of phenylbutazone, phenobarbital, and carbamaze-

pine (847). Administration of a polythiol-binding resin
to mice greatly increases the fecal excretion and reduces

the body burden of methylmercury (202). This resin was
therapeutically beneficial in enhancing methylmercury
excretion in an exposed Iraqi population (53). Thus, use
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of these binding agents is a practical means for detoxi-

cation of animals and patients exposed to toxicants.

More recent studies indicate administration of ali-
phatic hydrocarbons such as mineral oil and hexadecane,

which are poorly absorbed by the gut, can enhance the
fecal excretion of lipophilic xenobiotics. For example,
presence of 5% mineral oil in the diet of rhesus monkeys

resulted in a 50% increase in the fecal excretion of mirex

(1010), 2,4,5,2’ ,4’,S’ -hexabromobiphenyl (1008), and
hexachlorobenzene (1006). Similar results have been ob-

served after 4% cholestyramine for pentachlorophenol

(1009) and hexadecane for hexachlorobenzene in rats
and rhesus monkeys (1005, 1006). Mineral oil and hex-
adecane also decreased the body burden of hexachloro-
benzene in sheep (1007) presumably by trapping these

agents in the feces.

Similar cycling probably exists for many therapeutic

agents but the relative importance to the pharmacody-

namics of each drug will have to await experimental

investigation in humans. Use of binding agents in the

treatment of xenobiotic toxicity is efficacious, and may,
in fact, further our understanding of the biliary excretory

processes and enterohepatic circulation of drugs and

toxicants in humans.

2. Antibiotics. Although hepatic biotransformation to

more polar forms decreases the enterohepatic circulation,

intestinal bacteria are sometimes able to convert xeno-

biotics back into their lipid-soluble forms and enhance

reabsorption (1106, 1266). Alterations in intestinal flora

with antibiotics may decrease the enterohepatic circula-

tion of some xenobiotics and concurrently shorten their

pharmacological half-lives. Use of antibiotics in studies

of the enterohepatic cycling of xenobiotics has been
reviewed by Illing (532). Specific examples of decreased
hydrolysis of conjugates and enterohepatic circulation of

the parent compound correlate with decreased numbers

of microflora and last 3 to 4 days with rifampicin or 7 to

14 days with ampicillin (48). These two antibiotics are

excreted into bile and may undergo an enterohepatic

recirculation (1107). Numerous studies have demon-
strated that microorganisms are capable of performing
appropriate biotransformations in vivo and in vitro (532).

Ix. Concluding Remarks

Much new data have been published recently which
greatly expand our understanding of biliary excretion.

However, this knowledge about hepatic elimination lags
behind that regarding mechanisms of secretion of corn-

pounds by the kidney and hepatic and renal biotransfor-
mation. Major obstacles hindering our search for new
information include the relative inaccessibility of bile
which deters examinations in humans and our technical
inability to sample bile at various places in the liver,
particularly the canaliculus. Unfortunately, we still do
not completely comprehend the mechanisms of bile for-
mation which would aid our understanding of biliary
excretion and cholestasis. Despite these limitations, con-

siderable information has been gathered about factors

influencing biliary excretion and mechanisms of hepatic

uptake. A major thrust in current and future research
will be to utilize sophisticated biochemical techniques to

isolate and purify the putative carriers involved in both

hepatic uptake and biliary excretion. The myriad data

discussed herein indicate the enormous complexity of

hepatic function. Future efforts must isolate and char-
acterize these carriers and ascertain how these are func-
tionally regulated. The road to new knowledge is open
and considerable efforts should be expended to further

our comprehension of regulatory and functional events

that occur at the cellular level.
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